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PREFACE 

Although  many  works  ou  the  subject  of  Acoustics  have  been 

written  for  the  use  of  musical  students,  the  author  of  this  book 

has  not  met  with  one  which  gives,  in  an  elementary  form,  more 

than  a  partial  view  of  the  science.  Thus,  there  are  several 

admirable  treatises  on  the  purely  physical  and  experimental 

part,  but  most  if  not  all  of  them  stop  short  just  when  the 

subject  begins  to  be  of  especial  interest  to  the  student  of  music. 

On  the  other  hand,  there  are  many  excellent  works,  which  treat 

of  the  bearings  of  purely  acoustical  phenomena  on  the  science 

and  art  of  music,  but  which  presuppose  a  kno^v^ ledge  of  such 

phenomena  and  their  causes  on  the  part  of  the  reader.  Thus 

the  ordinary  musical  student,  who  can  probably  give  but  a 

limited  amount  of  time  to  this  part  of  his  studies,  is  at  the 

disadvantage  of  having  to  master  several  works,  each  probably 

written  in  a  totally  different  style,  and  possibly  not  all  agreeing 

perfectly  with  one  another  as  to  details.  This  disadvantage  has 

been  felt  by  the  author,  in  his  classes  for  some  years  past,  and 

the  present  work  has  been  written  with  the  object  of  furnishing 

to  the  student,  as  far  as  is  possible  in  an  elementary  work,  a 

complete  view  of  Acoustical  science  and  its  bearings  on  the  art 
of  music. 



PREFACE. 

In  the  arrangement  of  the  subject,  the  reader  should  observe 

that  up  to  and  including  the  7th  Chapter,  the  sounds  treated  of 

are  supposed  to  be  simple;  the  next  four  chapters  treat  of 

sounds — both  simple  and  compound — singly,  that  is  to  say,  only- 
one  tone  is  supposed  to  be  produced  at  a  time  ;  the  phenomena 

accompanying  the  simultaneous  production  of  two  or  more 

sounds  are  reserved  for  the  remaining  chapters. 

The  movable  Sol-fa  names  for  the  notes  of  the  scale  have  been 

used  throughout,  as  they  are  so  much  better  adapted  to  scientiiic 

treatment  than  the  fixed  Staff  Notation  symbols.  It  may  be 

useful  to  readers  not  acquainted  vrith  the  Tonic  Sol-fa  Notation 
to  mention  that  in  this  system,  the  symbol  d  is  taken  to 

represent  a  sound  of  any  assumed  pitch,  and  the  letters,  r,  m,  f, 

S,  1,  t,  represent  the  other  tones  of  the  diatonic  scale  in 
ascending  order.  The  sharp  of  any  one  of  these  tones  is  denoted 

by  placing  the  letter  e  after  its  symbol :  thus,  the  shai-p  of  s  is 
se ;  of  r,  re ;  and  so  on.  The  flat  of  any  tone  is  denoted 
by  placing  the  letter  a  after  its  symbol :  thus  the  flat  of  t  is  ta; 

of  m,  ma :  and  so  on.  The  upper  or  lower  octaves  of  these 
notes  are  expressed  by  marks  above  or  below  their  symbols : 

thus  d^  is  one  octave,  d^  two  octaves  above  d ;  Si  is  one  octave, 
S2  two  octaves  below  s-  Absolute  pitch  has  been  denoted 

throughout  by  the  ordinary  symbols,  C  representing  the 

note  on  the  ledger  line  below  the  treble  staff.  Its  successive 

higher  octaves  are  denoted  by  placing  the  figures  1,  2,  3,  &c., 

above  it,  and  its  lower  octaves  by  writing  the  same  figures 

beneath  it;  thus,  C^  C«,  C»,  &c. ;  Ci,  Cj,  Cj,  &c. 

It  is  perhaps  as  well  to  observe,  that  although  Helmholtz'e 
theory  as  to  the  origin  of  Combination  Tones  given  in  Chap. 

XII  is  at  present  the  received  one,  it  is  possible  that  in  the 

future  it  may  require  modification,  in  view  of  the  recent 

researches  of  Preyer,  Koenig,  and  Bosanquct. 



PREFACE. 

Although  this  book  has  not  been  written  expressly  for  the  use 

of  students  preparing  for  any  particular  examination,  it  will  be 

found  that  a  mastery  of  its  contents  will  enable  a  candidate  to 

successfully  work  any  papers  set  in  Acoustics  at  the  ordinary 

musical  examinations,  including  those  of  the  Tonic  Sol-fa 

College,  Trinity  College,  and  the  examinations  for  the  degree  of 

Bachelor  of  Music  at  Cambridge  and  London.  The  papers  set 

at  these  examinations  during  the  last  two  years,  together  with 

the  answers  to  the  questions,  will  be  found  at  the  end  of  the 
book. 

The  text  will  be  found  to  be  fully  illustrated  by  figures,  of 

which  Nos.  1,  2,  20,  21,  23,  36,  37,  50,  51,  64  are  taken  from 

Deschanel's  Treatise  on  Natural  Philosophy,  and  Nos.  4,  5,  58, 

72,  78  from  Lees'  Acoustics,  Light,  and  Heat,  by  permission  of 
Messrs.  Blackie  &  Sons  and  Collins  &  Son  respectively.  All  the 

other  figures  have  been  cut  expressly  for  this  work. 
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CHAPTER    I 

Introductory  :  The  Origin  of  a  Musical  Sound. 

It  must  be  evident  to  every  one,  that  the  cause  of  the  sensation  we 

term  "sound,"  is  something  external  to  us.  It  is  almost  equally 
obvious  that  this  external  cause  is  motion.     To  be  convinced  of  this 

Fig.  I. 

fact,  it  is  only  necessary  to  trace  any  sound  to  its  origin  ;  the  sound 
from  a  piano,  for  example,  to  its  vibrating  string,  or  that  from  a 
harmonium  to  its  oscillating  tongue.     If  the  glass  bell  (fig.  1 )  be 
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bowed,  it  will  emit  a  sound,  and  the  little  suspended  weight  will  be 
violently  dashed  away  ;  the  rattle  of  the  moving  glass  against  the 
projecting  point  will  also  be  plainly  heard.  Even  where  the  move- 

ment cannot  be  seen,  as  in  most  wind  instruments,  it  may  easily  be 
felt. 

Although  all  sounds  are  thus  produced  by  motion,  movements 
do  not  always  give  rise  to  the  sensation,  sound.  We  have  therefore 

to  ascei-tain,  what  particular  kind  of  motion  is  capable  of  producing 
the  sensation,  and  the  conditions  necessary  for  its  production. 
Sounds  may  be  roughly  classified  as  musical  or  unmusical.  As  we 
are  only  concerned  here  with  the  former,  it  will  be  as  well  first  to 
distinguish  as  far  as  possible  between  the  two  classes.  For  acoustical 
purposes,  we  may  define  a  musical  sound  to  be  that,  which, 
whether  it  lasts  for  a  long  or  short  period  of  time,  does  not  vary  in 
pitch.  In  other  words,  a  musical  sound  is  a  steady  sound.  In  an 
ordinary  way,  we  say  that  a  sound  is  musical  or  unmusical,  accord- 

ing as  it  is  pleasant  or  otherwise,  and  on  examination,  this  will  be 
found  to  agree  fairly  well  with  the  more  rigid  definition  above, 
especially  if  we  bear  in  mind  the  fact,  that  most  sounds  consist  of 
musical  and  unmusical  elements,  and  that  the  resulting  sound  is 

agreeable  or  the  reverse,  according  as  the  former  or  the  latter  pre- 
dominate. For  example,  the  sound  produced  by  an  organ  pipe 

consists  of  the  steady  sound  proper  to  the  pipe,  and  of  the  unsteady 
fluttering  or  hissing  sound,  caused  by  the  current  of  air  striking  the 
thin  edge  of  the  embouchure ;  but,  as  the  former  predominates 
greatly  over  the  latter,  the  resulting  sound  is  termed  musical. 
Again,  in  the  roar  of  a  waterfall  we  have  the  same  two  elements, 
but  in  this  case,  the  unsteady  predominates  over  the  steady,  and  an 
unmusical  sound,  or  noise,  is  the  result. 

We  have  just  seen  that  the  external  cause  of  a  musical  sound 
is  motion;  we  shall  further  find  on  examination,  that  this  motion  is 
a  periodic  one.  A  periodic  motion  is  one  that  repeats  itself  at  equal 
intervals  of  time ;  as,  for  example,  the  motion  of  a  common 
pendulum.  In  order  to  satisfy  ourselves  that  a  musical  sound  is 
caused  by  a  periodic  motion,  we  will  examine  into  the  origin  of  the 
sounds  produced  by  strings,  reeds,  and  flue  pipes. 

A  very  simple  experiment  will  suffice  in  the  case  of  the  first 
named.  Stretch  a  yard  of  common  elastic  somewhat  loosely 
between  two  pegs.  On  plucking  it  in  the  middle,  it  begins 
vibrating,  and  although  its  motion  is  somewhat  rapid,  yet 
we   have  no   difficulty  in  counting   the  vibrations ;    or  at  any 
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rate,  we  can  see  that  they  follow  one  another  regularly  at 
equal  intervals  of  time.  Further,  we  may  notice,  that  this  is  the 
case,  whether  we  pluck  the  string  gently  or  violently,  that  is, 
whether  the  vibrations  are  of  large  or  small  extent.  The 

motion  of  the  string  is  therefore  periodic,  —  its  vibrations  are  all 
executed  in  equal  times.  If  now  the  elastic  be  stretched  a 
little  more,  the  vibrations  become  too  rapid  for  the  eye  to  follow. 

We  see  only  a  hazy  spindle,  yet  we  cannot  doubt  but  that  the  kind 
of  motion  is  the  same  as  before.  Stretch  the  string  still  more, 
and  now  a  musical  sound  is  heard,  which  is  thus  caused  by  the 
rapid  periodic  motion  of  the  string. 

A  similar  experiment  proves  the  same  fact  with  regard  to  reed 
instruments.  Fasten  one  end  of  a  long  thin  strip  of  metal  in  a 

vice  (fig.  2).     Displace  the  other  end  (d)  of  the  strip,  and  let  it  go. 

Fig.  2. 

The  strip  vibrates  slowly  enough  for  us  to  count  its  vibrations,  and 

these  we  find  to  recur  regularly ;  that  is,  the  motion  is  periodic. 
Gradually  shorten  the  strip,  and  the  vibrations  will  follow  one 
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auother  faster  and  faster,  till  at  length  a  musical  sound  is  heard. 
Although  we  cannot  now  follow  the  rapid  motion  of  the  strip,  yet, 
as  in  the  case  of  the  string  above,  we  may  fairly  conclude  that  its 
character  remains  unaltered  ;  that  is,  the  motion  is  still  periodic. 

In  such  an  instrument  as  a  flue  pipe,  the  vibrating  body  is 
the  air.  Although  this  itself  is  invisible,  it  is  not  diflficult  to  render 
its  motion  visible.     Fixed  vertically  in  the  stand  (fig.  3)  is  a  glass 

f^^ 

tube  A  B,  about  2ft.  long  and  an  inch  in  diameter.  Passing  into  the 

lo'^er  end  of  the  tube  is  a  pin-hole  gas  jet,  (/),  joined  to  the  ordinaiy 

gas  supply  by  india-rubber  tubing.  Before  the  jet  is  introduced 
into  the  tube,  it  is  ignited,  and  the  gas  turned  down,  until  the  flame 
is  about  an  inch  or  less  m  height.  On  inserting  this  into  the  glass 
tube,  after  a  little  adjustment,  a  musical  sound  is  heard  coming 

from  the  tube.  It  is,  in  fact,  the  well-known  singing  flame.  The 
particles  of  air  in  the  tube  are  in  rapid  vibration,  moving  towards 
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the  centre  and  from  it,  alternately.  The  air  particles  at  that  part 
of  the  tube,  where  the  flame  is  situated,  will  therefore  be  alternately, 

crowded  together  and  scattered  wider  apart ;  that  is,  the  pressure  of 
the  air  upon  the  flame  will  be  alternately  greater  and  less  than  the 

ordinary  atmospheric  pressure.  The  effect  of  the  greater  pressure 
upon  the  flame  will  be  to  force  it  down,  or  even  extinguish  it 
alt(jgether ;  the  effect  of  the  lesser  pressure  will  be  to  enlarge  it. 
Thus  the  flame  will  rise  and  fall  at  every  vibration  of  the  air  in  the 
tube.  These  movements  of  the  flame  are  too  rapid,  however,  to  be 

followed  by  the  eye,  and  the  flame  itself  will  still  appear  to  be  at 
rest.  In  order  to  observe  them,  recourse  must  be  had  to  a  common 

optical  device.  First,  reduce  the  tube  to  silence,  by  lowering  the 
position  of  the  jet.  Having  then  darkened  the  room,  rotate  a  mirror 
(M)  on  a  vertical  axis  behind  the  flame.  The  latter  now  appears  in 
the  mirror  as  a  continuous  yellow  band  of  light,  for  precisely  the 
same  reason,  that  a  lighted  stick,  on  being  whirled  round,  presents 
the  appearance  of  a  luminous  circle.  Now  restore  the  jet  to  its 
former  position  in  the  tube.  The  latter  begins  to  sing,  and  on 
rotating  the  mirror  we  no  longer  see  a  continuous  band  of  light* 
but  a  series  of  distinct  flames  (o  p)  joined  together  below  by  a  very 
thin  band  of  light.  This  clearly  shows,  that  the  flame  is  alternately 

large  and  very  small ;  that  is,  alternately  rising  and  falling,  as 
described  above.  Now  while  the  mirror  is  being  rotated  at  an  even 
rate,  notice  that  the  intervals  between  the  flames  are  all  equal,  and 
also  that  the  flames  themselves  are  all  of  the  same  size.  From  what 

is  stated  above,  it  will  be  seen  that  this  proves  our  point,  namely, 

that  the  sound  in  this  case  is  produced  by  the  periodic  or  vibratory 
motion  of  the  particles  of  air. 

By  examining  in  this  way  into  the  origin  of  other  sounds,  it  will 
be  found  that  all  musical  tones  are  caused  by  the  periodic  motion 
of  some  body.  Further,  a  periodic  or  vibratory  motion  will  always 

produce  a  musical  sound,  provided,  (1),  that  the  vibrations  recur 
with  sufficient  rapidity;  (2),  that  they  do  not  recur  too  rapidly;  (3), 
that  they  are  sufficiently  extensive,  and  the  moving  body  large 
enough.     The  following  experiments  will  illustrate  this. 

Fig.  4  represents  an  ordinary  cogwheel  (B),  having  some  80  or  90 
teeth,  which  can  be  rapidly  rotated  by  means  of  the  multiplying 

wheel  (A).  Holding  a  card  (E)  so  as  just  to  touch  the  cogs,  we 
slowly  turn  the  handle  of  the  multiplying  wheel.     The  card  is 
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Fig.  4. 

lifted  slightly  by  each  cog  as  it  passes,  but  is  almost  immediately 
released,  and  falls  back  against  the  succeeding  one ;  that  is,  it 
vibrates  once  for  every  cog  that  passes  it.  As  long  as  the  wheel 
is  revolving  slowly,  the  card  may  thus  be  heard  striking  against 
each  cog  separately.  If,  however,  the  speed  be  increased,  the  taps 
will  succeed  one  another  so  rapidly  as  to  coalesce,  and  then  a 
continuous  sound  will  be  heard. 

The  well-known  Trevelyan's  rocker  is  intended  to  illustrate  the 
same  thing.  It  consists  of  a  rectangular-shaped  piece  of  copper 
about  6  inches  long,  2^  inches  broad,  and  1  inch  thick.  The  lower 
side  is  bevelled,  and  has  a  longitudinal  groove  running  down  the 
middle,  as  shown  in  fig.  5.     Attached  to  one  end  is  a  somewhat 

Fig.  5. 

slender  steel  rod,  terminating  in  a  brass  ball.  If  we  place  the 
rocker,  with  its  bevelled  face  resting  against  a  block  of  lead,  and 
with  the  ball  at  the  other  end  resting  on  the  smooth  surface  of  a 
table,  it  will  rock  from  side  to  side  on  being  slightly  displaced,  but 
not  quickly  enough  to  produce  a  musical  sound.  If,  however,  we 
hold  the  rocker  in  the  flame  of  a  Bunsen  burner,  or  heat  it  over  a 
fire,  for  a  few  minutes,  and  then  place  it  as  before  against  the 
leaden  block,  we  shall  find  it  giving  forth  a  clear  and  continuous 

sound.     This  phenomenon  may  be  explained  thus : — When  any 



THE   ORIGIN   OF  A   MUSICAL   SOUND.  7 

point  of  the  heated  rocker  on  one  side  of  the  groove  touches  the 
lead,  it  imparts  its  heat  to  the  latter  at  that  spot.  This  causes  the 
lead  at  that  particular  point  to  expand.  A  little  pimple,  as  it  were, 
darts  upland  pushes  the  rocker  back  (fig.  6),  so  that  it  falls  over  on 

Fig.  6. 

to  the  other  side  of  the  groove.  A  second  heat  pimple  is  raised 
here,  and  the  rocker  is  tilted  in  the  contrary  direction,  and  thus 
the  motion  is  continued,  as  long  as  the  rocker  is  sufficiently  hot. 

Summary. 

The  cause  of  the  sensation  sound,  is  motion. 

A  musical  sound  is  one  which  remains  steadily  at  a  definite  pitch. 
A  musical  sound  originates  in  the  periodic  motion  of  some  body. 
A  periodic  or  regular  vibratory  motion  will  always  give  rise  to 

a  musical  sound,  if  the  vibrations  recur  with  sufficient,  but  not  too 
great  rapidity,  and  provided  they  are  extensive  enough. 



CHAPTER  II, 

The  Transmission  of  Sound. 

We  have  seen  in  the  preceding  chapter,  that  all  sounds  originate  in 
the  vibratory  movements  of  bodies.  This  vibratory  motion  is 
capable  of  being  communicated  to,  and  transmitted  by,  almost  all 
substances,  to  a  greater  or  less  extent.  Wood,  glass,  water,  brass, 
iron,  and  metals  in  general  may  be  taken  as  examples  of  good 
conductors  of  sound.  But  the  substance,  which  in  the  vast  ma- 

jority of  cases  transmits  to  our  ears  the  vibratory  motion,  which 
gives  rise  to  the  sensation,  sound,  is  the  air. 

A  very  little  reflection  is  sufficient  to  show  us  that  some  medium 
is  absolutely  necessary  for  the  transmission  of  sound;  for  inasmuch 
as  sound  is  caused  by  vibratoiy  motion,  it  is  plain  that  this  motion 
cannot  pass  through  a  vacuum.  This  fact  can,  however,  be  easily 

proved  experimentally.  Under  the  receiver  of  an  air-pump  a  bell 
is  suspended.  We  shake  the  pump,  and  the  bell  may  be  heard  ring- 

ing ;  for  its  vibrations  are  communicated  by  the  air  to  the  glass  of 
the  receiver,  and  by  the  latter  to  the  outer  air,  and  so  to  our  ears. 
We  now  pump  as  much  air  as  possible  out  of  the  receiver,  and  again 
ring  the  bell.  It  can  still  be  heard  faintly,  for  we  cannot  remove 
all  the  air.  We  now  allow  dry  hydrogen  to  pass  into  the  receiver, 
and  on  again  ringing  the  bell,  there  is  very  little  increase  of 

sound,  this  gas  being  so  very  light — only  about  jL-  as  heavy  as  air. 
If  we  now  exhaust  the  receiver,  we  shall  be  able  still  further  to 
attenuate  the  atmosphere  within  it,  and  then,  although  we  may 
violently  shake  the  apparatus,  no  sound  will  be  heard. 

As  the  air  is  generally  the  medium,  by  means  of  which  the 
vibratory  motion  reaches  our  ears,  we  shall  now  have  to  carefully 
study  the  manner  in  which  this  transmission  takes  place.  When 
we  stand  on  the  sea  shore,  or  better  still,  on  a  cliff  near  it,  and 
watch  the  waves  rolling  in  from  afar,  our  first  idea  is,  that  the 
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water  is  actually  moving  towards  us,  and  it  is  difficult  at  the  time 
to  get  rid  of  this  notion.  If,  however,  we  examine  a  little  more 
closely,  we  see  that  the  boats  and  other  objects  floating  about,  do 
not  travel  forward  with  the  wave,  but  simply  rise  and  fall  as  it 
passes  them.  Hence  we  conclude  that  the  water  of  which  the 
wave  is  composed,  is  not  moving  towards  us.  What  is  it,  then, 
that  is  being  transmitted  ?  What  is  it  that  is  moving  forwards  ? 

The  up  and  down  movement — the  wave  motion.  Now  the  vibratory 
movements  which  give  rise  to  sound  are,  as  we  shall  presently 
see,  transmitted  through  the  air  much  in  the  same  way;  and 
therefore,  although  a  sound  wave  is  not  exactly  analogous  to  a 
water  wave,  yet  a  brief  study  of  the  latter  will  help  us  more  easily 
to  understand  the  former. 

Let  ADECB  (fig.  7)  represent  the  section  of  a  water  wave,  and 
the  dotted  line  AEB  the  surface  of  still  water.  That  part  of  the 
wave  ADE  above  the  dotted  line,  is  termed  the  crest,  and  the  part 
ECB  below,  the  trough.  Through  D  and  C,  the  highest  and 
lowest  points,  draw  DH  and  EC,  parallel  to  AB,  and  from  the 
same  points  draw  DF  and  OH  perpendicular  to  it.  Then  the 
distance  AB  is  termed  the  length  of  the  wave,  DF  or  CH  is  its 
amplitude,  and  the  outline  ADEOB  is  its  form. 

B'iG.  7. 

These  three  elements  completely  determine  a  wave,  in  the  same 

way  as  the  length,  breadth  and  thickness  of  a  rectangular  block  of 
wood,  determine  its  size ;  and  further,  as  any  one  of  these  three 

dimensions  may  vary  independently  of  the  other  two,  so  any  one 

of  the  three  elements — length,  amplitude,  and  form — may  varj%  the 
other  two  remaining  constant.  Thus  in  fig.  8  (1),  we  have  three 
waves  of  the  same  amplitude  and  form,  but  varying  in  length ;  in 

fig.  8  (2),  we  have  three  waves  of  same  length  and  form,  but  of 
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Fio.  8(1). 

difPerent  amplitudes ;  while  in  fig.  8  (3),  we  have  three  waves  of 
same  length  and  amplitude,  but  of  varying  forms. 

Fio.  8  (2). 
Fig.  8  (3). 

We  now  have  to  inquire  into  the  nature  of  the  movements  of  the 
particles  of  water  which  form  the  wave.  The  following  apparatus 
will  assist  the  student  in  this  inquiry.     Fig.  9  represents  a  box 

about  four  feet  long,  four  inches  broad,  and  six  inches  deep,  with 
either  one  or  both  the  long  sides  of  glass,  and  caulked  with  marine 
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glue,  so  as  to  be  water-tight.  This  is  more  than  half  filled  with 
water,  in  which  are  immersed  at  different  depths,  balls  of  wax 
mixed  with  just  so  much  iron  filings,  as  will  make  them  of  the 
same  specific  gravity  as  water.  Now  alternately  raise  and  depress 
one  end  of  the  box,  so  as  to  give  rise  to  waves.  The  balls  will 
describe  closed  curves  in  a  vertical  plane,  the  hoiizontal  diameter 
of  which  will  much  exceed  the  vertical.  If  a  deeper  trough  be 
taken,  the  difference  between  the  horizontal  and  vertical  diameters 
of  these  curves  will  become  less  ;  and  in  fact,  in  very  deep  water 
the  two  diameters  become  of  the  same  length  ;  that  is,  the  closed 
curves  become  circles.  It  will  be  noticed  also,  that  each  particle  of 
water  describes  its  curve  and  returns  to  its  original  position,  in  the 
same  time  as  the  wave  takes  to  move  through  its  own  length. 
Bearing  in  mind  these  facts,  we  may  plot  out  a  water  wave  in  the 
manner  shown  in  fig.  10.     In  the  top  row  are  17  dots,  representing 
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17  equidistant  particles  of  water  at  rest,  and  the  circles  in  which 
they  are  about  to  move,  in  the  same  direction  as  the  hands  of  a 

clock.  In  (0),  the  position  of  each  of  these  particles  in  given  at 
the  moment  when  they  form  parts  of  the  two  complete  waves  A  and 
B,  which  are  supposed  to  be  passing  from  left  to  right ;  the  8th 

particle  from  the  left  has  just  passed  through  ̂ th  of  its  journej^ 
that  is  ̂ th  of  the  whole  circumference  ;  the  7  th  particle  has  passed 

through  I  =  i;  the  6th  through  f  ;  the  5th  has  just  performed  ̂  
its  journey ;  the  4th,  | ;  the  3rd,  | ;  the  2nd,  | ;  and  the  first  has 

just  completed  its  course  and  regained  its  original  position.  In  (1) 

each  particle  has  moved  through  -^  more  of  its  curve,  and  the  wave 
has  passed  through  a  space  equal  to  ̂   of  its  length.  In  (2)  each 
particle  has  moved  through  ̂   more,  and  the  wave  has  again 
advanced  as  before ;  and  so  on,  in  (3),  (4),  (5),  (6),  (7),  and  (8). 
Each  particle  in  (8)  has  the  same  position  as  in  (0),  having  made 
one  complete  journey  ;  and  the  wave  has  advanced  one  wave  length. 
Thus  we  see,  as  in  the  experiment  with  the  trough,  that  each 

particle  makes  one  complete  journey  in  the  same  time  as  the  wave 
takes  to  travel  its  own  length. 

Another  variety  of  wave  motion  may  be  studied  thus  :  Fill  an 
india-rubber  tube,  about  12  feet  long  and  ̂   inch  in  diameter,  with 

sand,  and  fasten  one  end  to  the  ceiling  of  a  room.  Hold  the  other 

end  in 'the  hand,  and  jerk  it  sharply  on  one  side.  Notice  the  wave 
motion  thus  communicated  to  the  tube,  the  wave  consisting  of  two 

protuberances,  one  on  each  side  of  the  position  of  the  tube  at  rest ; 
the  one  corresponding  to  the  crest  of  the  water  wave,  and  the  other 

to  its  trough.     Let  the  uppermost  row  of  dots  in  fig.  1 1 ,  represent 
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17  equidistant  particles  of  the  tube  at  rest ;  (0)  gives  tlie  positions 
of  the  particles  when  they  form  parts  of  two  complete  waves  A  and 
B;  and  (1)  to  (8)  show  their  positions  at  successive  intervals  of  time, 
each  equal  to  ̂   of  the  time  that  it  takes  a  particle  to  perform  one 
complete  vibration.  By  a  careful  inspection  of  this  diagram,  it  will 
be  seen  that  while  each  particle  performs  one  complete  vibration, 

the  wave  travels  through  a  space  equal  to  its  own  length.  Taking 

the  1st  particle  in  A,  for  example  : — in  (1),  it  has  risen  half  way  to 
its  highest  point ;  in  (2),  it  has  reached  its  highest  point ;  in  (3),  it 
is  descending  again;  m  (4),  it  is  passing  downwards  through  its 
original  position;  in  (5),  it  is  still  sinking;  in  (6),  it  has  reached  its 
lowest  position  ;  in  (7),  it  is  ascending  again ;  in  (8),  it  has  reached 
its  original  position,  having  made  one  complete  vibration.  Now  it 
is  obvious  from  the  figure,  that  during  this  time  the  wave  A  has 
passed  through  a  space  equal  to  its  own  length. 

Let  the  curve  in  fig.  12  represent  the  outline  section  of  the  wave 

A  in  fig.  11.  Through  the  deepest  and  highest  points  {d)  and  (c)  of 
the  protuberances,  draw  the  dotted  straight  lines  parallel  to  AB, 
the  position  of  the  tube  when  at  rest.  Through  {d)  draw  {df)  at 
right  angles  to  AB ;  then  as  before  {df)  is  the  amplitude,  of  the 
wave.  Now  on  comparing  this  with  fig.  11  it  will  be  seen  that  this 
amplitude  is  the  same  thing  as  extent  of  vibration  of  each  particle. 

Fw.  12. 

If  we  suppose,  that  a  particle  takes  a  certain  definite  time,  say 
one  second,  to  perform  its  vibration,  it  is  evident  that  the  number 
of  different  modes  in  which  it  may  get  over  its  ground  in  this 
time  is  infinite.  Thus  it  may  move  slowly  at  first,  then  quickly 
and  again  slowly;  or  it  may  start  quickly,  then  slacken,  again 
quicken,  slacken  again,  and  finish  up  quickly;  and  so  on.  In  fig.  13, 
two  waves  of  equal  length  and  amplitude  are  represented  after  the 
manner  of  fig.  12.  The  extent  and  time  of  particle  vibration  being 

the  same,  they  only  differ  in  the  mode  of  vibration.  In  {h)  the 
particle  at  first  moves  more  quickly  than  in  (a) ;  it  then  moves 
more  slowly ;  and  so  on.  Thus  for  example  :  supposing  the  time  of 
a  complete  vibration  to  be  one  second,  the  particle  in  (a)  reaches  its 
highest  position  in  one  quarter,  and  its  lowest,  in  three  quarters  of 
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a  second  after  the  start ;  while  in  (ft)  the  particle  reaches  the  same 
points  in  ̂ ,  and  ̂   of  a  second,  respectively.  Now  it  is  plain  from 
the  figure,  that  this  difference  in  mode  of  particle  vibration  is 
accompanied  by  a  difference  in  the  form  of  the  wave,  and  a  little 
reflection  will  show  that  this  must  always  be  the  case.  We  have 
thus  seen  how  the  length,  amplitude,  and  form  of  a  wave  are 
respectively  connected  with  the  time,  extent,  and  mode  of  particle 
vibration. 

rhj 

(V 

Fig.  13. 

Having  now  made  some  acquaintance  with  wave  motion  in 
general,  wo  may  pass  on  to  consider  the  particular  case  of  the 
sound  wave.  The  first  point  to  which  we  must  turn  our  attention, 

is  the  nature  of  the  medium.  Air,  like  every  other  gas,  is 
supposed  to  be  made  up  of  almost  infinitely  small  particles.  These 
particles  cannot  be  very  closely  packed  together;  in  fact,  they 
must  be  at  considerable  distances  apart  in  proportion  to  their  size, 
for  several  hundred  volumes  of  air  can  be  compressed  into  one 
volume.  When  air  is  thus  compressed,  the  particles  of  which  it 
consists,  press  against  one  another,  and  against  the  sides  of  the 
containing  vessel  in  all  directions ;  and  that  with  a  force  which  is 
the  greater,  the  closer  the  particles  are  pressed  together ;  in  other 
words,  the  air  is  elastic.  An  ordinary  popgun  will  illustrate  this  : 
a  certain  volume  of  air  having  been  confined  between  the  cork  and 
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the  rammer  of  the  guu,  the  latter  is  gradually  pushed  in ;  the  air 
particles  being  thus  crowded  closer  and  closer  together,  exert  an 
ever  increasing  pressure,  until  at  length  the  weakest  point,  the 
cork,  gives  way. 

A 

(^) 

A       B 

a^^^^^^^b 

A        H 

A       B 

C^) 

(3) 

a-.-.-srrzzzl,   C  i"zzzz——.(^ 
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Fto.  14. 
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Let  A,  fig.  14  (1),  represent  a  tuning-fork,  and  BC  a  long  tube 
open  at  both  ends.  Suppose  now,  that  the  fork  begins  vibrating, 
its  prongs  first  performing  an  outward  journey.  The  air  in  BO 

will  be  condensed,  but  in  consequence  of  the  swiftness  of  the  fork's 
motion,  and  the  great  elasticity  of  air,  this  condensation  will  be 

confined  during  the  outward  journey  of  the  prongs,  to  a  coir.para- 
fcively  small  portion  of  the  tube  BC :  say  to  the  portion  {ab) 
fig.  14  (2).  The  air  in  {ah),  being  now  denser  than  that  in  advance 

of  it,  will  expand,  acting  on  the  air  in  (&0)  as  the  tuning-fork 
acted  upon  it,  thus  causing  a  condensation  in  {he)  fig.  14  (3), 
while  the  air  in  {ah)  itself,  overshooting  the  mark,  as  it  were, 
becomes  rarefied,  an  effect  which  is  increased  by  the  simultaneous 

retreat  of  the  prong  A.  Again,  the  air  in  {he)  fig.  14  (3),  being 
denser  than  that  before  and  behind,  expands  both  ways,  forming 
condensations  {cd)  and  (ah)  fig.  14  (4),  in  both  directions ;  while  in 

its  place  is  formed  the  rarefaction  (6c),  the  formation  of  the  con- 
densation {ah)  being  assisted  by  the  outward  journey  of  A.  Next 

the  air  in  {ah)  and  {cd)  fig.  14  (4),  being  denser  than  that  on  either 
side,  expands  in  both  directions,  forming  the  condensations  (hci 
and  {de)  fig.  14  (5) ;  rarefactions  being  formed  in  {ab)  and  {cd), 
the  former  assisted  by  the  retreat  of  the  prong  A.  By  further 

repetitions  of  this  process  the  sound  waves  {ac)  and  (ce)  will  be 

propagated  along  the  tube. 

For  the  sake  of  simplicity,  the  motion  has  been  supposed  to  take 

place  in  a  tube.  This  restriction  may  now  be  removed.  The 
movement  of  the  air  passing  outward  in  every  direction  from  the 

sounding  body,  the  successive  condensations  and  rarefactions  form 

spherical  concentric  shells  round  it. 

In  fig.  14  (5),  {ac)  and  (ce)  form  two  complete  sound  waves,  {he) 
and  {de)  being  the  condensed,  and  {ah)  and  {cd)  the  rarefied  parts. 
In  studying  the  motion  of  the  particles  of  air  forming  these  sound 
waves,  it  will  be  simplest  to  consider  those  adjoining  the  prong  A, 
for  their  motion  will  necessarily  be  similar  to  that  of  the  prong 
itself.  The  first  point  to  notice  is,  that  the  direction  of  particle 
vibration  in  this  case  is  the  same  as  that  of  the  wave  motion,  and 

not  transversely  to  it  as  in  the  case  of  the  sand  tube.  In  the  next 

place,  it  will  be  observed,  that  the  tuning-fork  makes  one  complete 
vibration  while  the  wave  passes  through  a  space  equal  to  its  own 

length ;  that  is,  each  particle  executes  one  complete  vibration  in 
exactly  the  same  time  as  the  wave  takes  to  pass  through  a  distance 
equal  to  its  own  length.     Again,  the  amplitude  of   the  wave  is 
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evidently  the  distance  through  which  the  individual  particles  of  air 
vibrate ;  that  is,  the  extent  of  particle  vibration.  Further,  it  is 
plain  that,  the  greater  the  swing  of  the  prong  A,  the  greater  will  be 
the  degree  of  condensation  and  rarefaction  in  {ab) ;  that  is,  the 
greater  the  extent  of  particle  vibration,  the  greater  will  be  the 

degree  of  rarefaction  and  condensation.  Lastly,  just  as  the  particles 
in  the  case  of  the  sand  tube  could  perform  their  vibrations  in  an 
infinite  number  of  modes,  so  the  fork  A,  and  therefore  the  air 

particles,  may  perform  their  vibrations  in  an  endless  variety  of 
modes,  giving  rise  to  as  many  wave  forms. 

It  is  often  convenient  to  represent  a  sound  wave  after  the  same 

manner  as  a  water  wavo.     Let  fig.  15  represent  the  section  of  a 

water  wave,  the  dotted  line  being  the  surface  of  the  water  at  rest. 

This  may  also  represent  a  sound  wave  the  length  of  which  is  [ah) 
distance  above  the  dotted  line  representing  extent  of  forward,  and 
distance  below  extent  of  backward  longitudinal  vibration.  For 

example,  the  air  particles  which  are  at  the  points  I  and  /  when  at 

rest,  would  be  at  d  and  g,  {ld  =  ce  and  hk^=gf)  in  the  state  of  things 
represented  in  the  figure.  The  curve  in  the  figure,  related  in  this 
way  to  the  wave  of  condensation  and  rarefaction,  is  termed  its 
associated  wave. 

The  velocity  with  which  these  sound  waves  travel  is  veiy  great, 
compared  with  that  of  water  waves.  The  method  of  determining 
it  is  very  simple  in  principle.  Two  stations  are  chosen  within  sight 
of  each  other,  the  distance  between  them  being  accurately  known. 

A  gun  is  fired  at  one  station,  and  an  observer  at  the  other  counts 
the  number  of  seconds  that  elapse  between  seeing  the  flash  and 
hearing  the  sound.  As  light  passes  almost  instantaneously  over 
any  terrestrial  distance,  the  time  that  sound  takes  to  travel  over  a 
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given  distance  is  thus  known.  Dividing  this  distance  by  the  number 
of  seconds,  we  determine  the  space  through  which  sound  travels  per 
second.  This  is  found  to  vary  considerably  with  the  temperature. 

At  0"^  (Centigrade)  or  32°  (Fahrenheit)  the  velocity  of  sound  is 
1,090  feet  per  second.  M.  Wertheim  gives  the  following  results  at 

other  temperatures  : — ■ 
Temperature.  Velocity 

Centigrade.  Fahrenheit.  of  Sound. 
—•5^  31-1°  1,0S9 
2-1°  3o-8°  1,091 
8-5=  47-3°  1,109 

12^  536''  1,113 
26-6^  79-9°  1,140 

The  velocity  at  any  temperature  may  be  approximately  found  by 
adding  on  2  feet  for  a  rise  of  one  degree  Centigrade,  and  1  foot  for 

a  degree  Fahrenheit. 

The  velocity  of  sound  in  any  medium  varies  directly  as  the  square 
root  of  the  elasticity,  and  inversely  as  the  square  root  of  the  density 
of  that  medium.  Therefore,  as  all  gases  have  the  same  elasticity, 

the  velocity  of  sound  in  gases  varies  inversely  as  the  square  root  of 
their  densities.  Thus  oxygen  is  16  times  as  heavy  as  hydrogen, 
and  the  velocity  of  sound  in  the  latter  gas  is  4  times  the  velocity 
in  the  former. 

Sound  travels  more  quickly  through  water  than  through  gases. 
CoUadon  and  Sturm  proved  that  the  velocity  of  sound  in  water  is 

4,708  feet  per  second,  at  8°  Centigrade.  Their  experiments  were 
conducted  on  the  Lake  of  Geneva,  on  the  opposite  sides  of  which 
the  observers  were  stationed  in  two  boats.  The  sound  was  emitted 

under  water  by  striking  a  bell  with  a  hammer,  and  after  travelling 
through  a  known  distance  was  received  by  a  long  speaking  tube, 
the  larger  orifice  of  which,  covered  with  a  vibrating  membrane,  was 
sunk  beneath  the  surface.  The  same  movement  which  gave  rise  to 
the  sound,  also  at  the  same  instant  ignited  some  gunpowder,  and 
the  number  of  seconds  elapsing  between  the  flash  and  the  sound 
was  determined  by  a  chronometer. 

In  solids,  the  velocity  of  sound  is  usually  greater  than  in  liquids. 
It  may  be  calculated  from  the  formula 

V  =  /f 
when  the  elasticity  E  and  density  d  of  the  solid  are  known. 
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The  various  experimental  methods  that  have  been  employed  for 
determining  it,  will  be  given  later  on.  The  following  are  some  of 
the  principal  determinations  made  by  Wertheim. 

Lead          -  -  4,030  feet  per  second  at  20°  G. 
Gold           -  -  5,717   „ 
Silver         -  -  8,553    „ 
Copper       -  -  11,666   ,, 
Platinum  -  -  8,815    ,, 
Iron           -  -  16,822    ,, 

Steel          -  -  16,357    ,, 
Wood  (along  fibre)  from  10,000  to  15,000  ,, 

,,      (across  ,,  )  ,,        3,000  to    5,000  ,, 

The  superior  conducting  power  of  elastic  solids  may  be  illustrated 

by  a  variety  of  experiments.  Thus,  strike  a  tuning-fork  and  place 
the  stem  against  the  end  of  a  rod  of  wood  12  or  15  feet  long.  So 
perfect  is  the  transmission,  that  if  a  person  applies  his  ear  to  the 
other  end,  the  sound  will  appear  to  come  from  that  part  of  the  rod. 
A  still  better  result  is  obtained  by  placing  one  end  of  the  rod 
against  a  door  panel,  and  applying  the  vibrating  tuning  fork  to  the 
other.  Again,  place  a  watch  well  between  the  teeth,  without 
however  touching  them,  and  note  the  loudness  of  its  tick.  Now 
gently  bite  the  watch,  and  observe  how  much  more  plainly  it  can 
be  heard.  In  the  first  case,  the  vibrations  pass  through  the  air  to 
the  ears,  in  the  second  case,  through  the  solid  bones  of  the  skull. 
This  is  the  principle  of  the  audiphone. 

Summary. 

Sound  cannot  be  transmitted  through  a  vacuum. 

The  transmission  of  sound  is  a  particular  case  of  wave  motion,  of 
which,  water  waves  and  rope  waves  are  other  examples.  The 
peculiar  characteristic  of  a  wave  motion  is,  that  the  material 
particles  through  which  the  wave  is  passing,  do  not  move  onwards 
with  the  wave,  but  simply  oscillate  about  their  position  of  rest. 
In  the  rope  wave,  for  example,  the  particles  of  the  rope  oscillate  at 
right  angles  to  the  direction  in  which  the  wave  is  advancing ; 
while,  on  the  other  hand,  in  the  sound  wave,  the  air  particles 
oscillate  in  the  same  direction  as  the  wave  is  moving. 

Just  as  a  water  or  rope  wave  consists  of  two  parts,  a  crest  and  a 
trough,  so  a  sound  wave  is  made  up  of  two  portions,  viz.,  a 
condensation  and  a  rarefaction. 
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A  sound  wave,  like  a  water  or  rope  wave,  is  determined  by  three 
elements,  viz.,  its  length,  amplitude,  and  form.  The  length  of  a  wave 
is  the  distance  from  any  point  in  one  wave  to  the  corresponding 

point  in  the  succeeding  one ;  the  (nnph'tude  is  measured  by  the 
extent  of  vibration  of  its  air  particles;  while  the  form  is  determined 
by  the  varying  velocities  of  these  particles  as  they  perform  their 
excursions. 

The  greater  the  amplitude  (that  is,  the  extent  of  particle  vibra- 
tion), the  greater  will  be  the  degree  of  condensation  and 

rarefaction. 

In  an  associated  sound  wave,  the  direction  of  particle  vibration  is 
represented,  for  the  sake  of  convenience,  as  being  at  right  angles 
to  its  true  direction. 

The  velocity  of  sound  at  the  freezing  point  is  1,090  feet  per  second, 
and  increases  as  the  temperature  rises. 

The  velocity  of  sound  in  water  is  4,708  feet  per  second  at  8° 
Centigrade. 

The  velocity  of  sound  in  elastic  solids,  such  as  iron  and  wood,  is 
much  greater  than  the  above. 
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CHAPTER    III 

Ox  THE  Ear. 

The  Human  Ear  is  separable  into  three  distinct  parts — the  External, 
the  Middle,  and  the  Internal. 

The  External  ear  consists  of  the  cartilaginous  lobe  or  Auricle,  and 
the  External  Meatus  (E.  M.  fig.  16).  The  latter  is  a  tube  about  an 
inch  and  a  quarter  long,  directed  inwards  and  slightly  forwards, 

and  closed  at  its  inner  extremity  by  the  Tympanum  (Ty.,  fig.  16) 

or  dioim  of  the  ear,  which  is  stretched  obliquel}"  across  it. 

Fig  16.     Diagrammatic  Section  of  the  Human  Ear. 

The  Middle  ear,  which  is  separated  from  the  External  by  the 
Tympanum,  is  a  cavity  in  the  bony  wall  of  the  skull,  called  the 
Tympanic  Cavity  (Ty.  C,  fig.  16).  From  this,  a  tube,  about  an 
inch  and  a  half  long,  termed  the  Eustachian  Tube  (Eu.,  fig.  16)  leads 
to  the  upper  part  of  the  throat,  and  thus  places  the  air  in  the 
Tympanic  Cavity  in  communication  with  the  external  air.  On  the 

side  opposite  to  the  tympanum,  there  are  two  small  apertures  in 
the  bony  wall  of  the  cavity,  both  of  which,  however,  are  closed  with 
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membrane.  The  lower  ol  these  two  apertures,  which  is  about  the 

size  of  a  large  pin's  head,  is  called  from  its  shape  the  Fenestra 
Rotunda,  or  round  window  (F.R.,  fig.  16) ;  the  upper  and  rather 
larger  one,  the  Fenestra  Ovalis,  or  oval  window  (F.  0.,  fig.  16). 

A  chain  of  three  small  bones,  stretches  between  the  Tympanum 
and  the  Fenestra  Ovalis.  One  of  these,  the  Malleus  or  Hammer 
Bone  (Mall.,  fig.  16)  is  firmly  fastened  by  one  of  its  processes  or 
arms  to  the  Tympanum,  while  the  other  process  projects  upwards 
into  the  cavity,  and  is  articulated  to  the  second  bone — the  Incus  or 
Anvil  (Inc.,  fig.  16).  The  lower  part  of  this  last  again,  is  articulated 
to  the  third  bone— the  Stapes  or  Stirrup  Bone  (St.,  fig.  16),  which 
in  its  turn  is  firmly  fastened  by  the  flat  end  of  the  Stirrup  to  the 
membrane  which  closes  the  Fenestra  Ovalis.  These  three  bones 

are  suspended  in  the  tympanic  cavity  in  such  a  way,  that  they  are 
capable  of  turning  as  a  whole  upon  a  horizontal  axis,  which  is 
formed  by  processes  of  the  Incus  and  Malleus,  which  processes  fit 
into  depressions  in  the  side  walls  of  the  cavity.  This  axis  in  fig.  16 
is  perpendicular  to  the  plane  of  the  paper,  and  would  pass  through 
the  head  or  upper  part  of  the  Malleus. 

There  are  also  two  small  muscles  in  the  tympanic  cavity,  by  the 
contractions  and  relaxations  of  which,  the  membrane  of  the  Fenestra 
Ovalis  and  the  tympanic  membrane  can  be  rendered  more  or  less 
tense.  One,  called  the  Stapedius,  passes  from  the  fioor  of  the 

tympanic  cavity  to  the  Stapes,  and  the  other — the  Tensor  Tympani — 
from  the  wall  of  the  Eustachian  tube  to  the  tj-mpanum. 

Before  going  further,  let  us  consider  the  functions  of  these  various 
parts.  The  sound  waves  which  enter  the  External  Meatus,  pass 
down  it,  assisted  in  their  passage  by  its  configuration,  and  strike 
against  the  Tympanum.  Now,  as  the  air  in  the  cavity  of  the 
tympanum  is  in  communication  with  the  outer  air,  as  long  as  the 
latter  is  at  rest,  they  will  be  of  the  same  density,  and  hence  the 
Tympanum  will  sustain  an  exactly  equal  pressure  from  both  sides. 
When,  however,  the  condensed  part  of  a  sound  wave  comes  into 
contact  with  it,  this  equilibrium  will  no  longer  exist ;  the  air  on  the 
outer  side  will  exert  a  greater  pressure  than  that  on  the  inner,  and 
the  Tympanum  will  bulge  inwards  in  consequence.  The  condensed 
part  of  the  wave  will  be  immediately  followed  by  the  rarefied  part, 
and  now  the  state  of  things  is  reversed ;  there  will  be  a  greater 
pressure  from  the  inside,  and  consequently  the  Tympanum  will 

move  outward,  a  movement  assisted  by  its  own  elasticity.  "We  see 
therefore,  that  the  Tympanum  will  execute  one  complete  vibration 
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for  every  wave  that  readies  it ;  that  is,  as  we  know  from  the  pre- 
ceding chapter,  it  will  perform  one  vibration  for  eveiy  vibration  of 

the  sound-producing  body. 

Further,  it  follows  from  the  arrangement  of  the  Malleus,  Incus, 
and  Stapes,  and  the  attachment  of  the  first  and  last  to  the  Tympanum 
and  the  Fenestra  Ovalis  respectively,  that  every  movement  of  the 
Tympanum  must  cause  a  similar  movement  of  the  Fenestra  Ovalis. 
We  see,  therefore,  that  this  latter  membrane  faithfully  repeats 

every  vibration  of  the  Tympanum,  that  is,  every  movement  of  the 

sound-originating  body. 
The  Internal  ear  is  of  a  much  more  complicated  nature  than 

the  parts  already  described.  It  consists  essentially  of  a  closed 
membranous  bag  of  a  very  irregular  and  intricate  shape,  which 
contains  a  liquid  termed  Endolymph,  and  which  floats  in  another 

liquid  called  Perilymph.  Both  the  Endolymph  and  the  Perilymph 
are  little  else  than  water.  This  membranous  bag  may  be  divided, 

for  the  purpose  of  explanation,  into  two  parts — the  Membranous 
Labyrinth  (M.  L.,  fig.  16)  and  the  Scala  Media  of  the  Cochlea 

(Sea.  M.,  fig.  16). 

The  Membranous  Labyrinth  comprises  the  TJtriculus  (Ut.,  fig  17), 

the  Sacculus,  and  the  three  Semi- circular  Canals.      All  these  parts 

PostVS.C. 

Hor  S.C. 

Fig.  17. 

communicate  with  one  another,  forming  one  vessel ;  the  two  first 

lying  one  behind  the  other,  and  the  three  canals  springing  from  the 
Utriculus.  One  end  of  each  of  the  Semi-circular  Canals  is  dilated 

at  the  point  where  it  joins  the  Utriculus  into  a  swelling  called  an 

Ampulla  (A,  fig.  17).  Of  the  three  canals  two  are  placed  vertically 

and  the  other  horizontally  ;  hence  their  names — the  Anterior 
Vertical  Semi-circular  Canal  (Ant.  V.  S.  C,  fig.  17),  the  Posterior 

Vertical  (Post.  V.  S.  C,  fig.  17)  and  the  Horizontal  (Hor.  S.  C,  fig. 

17).     All  these  parts  are  contained  in  a  bony  casing,  which  follows 
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their  outline  pretty  closely,  so  that  there  is  a  bony  labyrinth,  bony 
semi-circular  canals,  and  so  on.  There  is  however  a  space  between 
the  bony  casing  and  the  membranous  parts,  which  is  filled  by  the 
Perilymph  referred  to  above. 

Every  part  of  the  Membranous  Labyrinth  is  lined  by  an  exceed- 
ingly delicate  coat — the  Epithelium — the  cells  of  which,  at  certain 

parts,  are  prolonged  into  very  minute  hairs,  which  thus  project  into 
the  Endolymph.  In  close  communication  with  these  cells  are  the 
ultimate  fibres  of  one  branch  of  the  Auditory  Nerve,  which, 
ramifying  in  the  wall  of  the  Membranous  Labyrinth,  pierces  its 
bony  casing  and  proceeds  to  the  brain.  Floating  in  the  Endolymph, 
there  are  also  minute  hard  solid  particles  called  Otoliths. 

The  remaining  part  of  the  Internal  ear  is  more  diflBcult  to  describe. 
It  consists  essentially  of  a  long  tube  of  bone  closed  at  one  end,  of 
which  fig.  18  is  a  diagrammatic  section.     A  thin  bony  partition—* 

iw. 

Fig.  18. 

the  Lamina  Spiralis,  L.  S. — projecting  more  than  half  way  into  the 
interior,  runs  along  the  tube  from  the  bottom,  nearly  but  not  quite 

to  the  top,  so  that  the  two  chambers — Sc.  Y.  and  Sc.  T — communi- 
cate at  the  closed  end  of  the  tube.  These  two  chambers — the  Scala 

Yestibuli  and  the  Scala  Tympani — are  filled  with  Perilymph. 
Diverging  from  the  interior  edge  of  the  Lamina  Spiralis  and  ter- 

minating in  the  bony  wall  of  the  tube,  are  two  membranous 

partitions,  the  Membrane  of  Eeissner  —  m.r. —  and  the  Basilar 
Membrane — b.  m.  The  chamber  between  these  two  membranes 
which  is  termed  the  Scala  Media— Sc.  M.— is  filled  with  Endolymph. 
So  far  the  tube  has  been  described  for  simplicity  as  if  it  were 

straight.  Now,  we  must  imagine  it  forming  a  close  coil  of  two  and 
a  half  turns  round  a  central  axis  of  bone— the  Modiolus;  the  Scala 

Media  being  outwards  and  the  Lamina  Spiralis  springing  from  the 

axis.     The  whole  arrangement  is  not  unlike  a  small  snail's  shell, 
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and  is  termed  the  Cochlea.  It  is  so  placed  with  reference  to  the 
other  parts  of  the  ear,  that  the  Scala  Tympani  is  closed  at  the  lower 

end  by  the  Fenestra  Eotunda  (F.  R.,  fig.  16)  while  the  Perilymph 
of  the  Scala  Yestibuli  is  continuous  with  that  of  the  Labyrinth. 
On  the  other  hand,  the  Endolymph  which  fills  the  Scala  Media  is 
in  communication  with  that  of  the  Sacculus. 

Eesting  on  the  upper  side  of  the  elastic  Basilar  membrane  are  the 

arches  or  rods  of  Corti.  Each  of  these  rods  consists  of  two  filaments, 
joined  at  an  angle  like  the  rafters  of  a  house.  Altogether  there 
are  some  three  or  four  thousand  of  them,  lying  side  by  side, 
stretching  along  the  whole  length  of  the  Scala  Media  like  the  keys 
of  a  pianoforte.  A  branch  of  the  auditory  nerve,  entering  the 
Modiolus,  gives  off  fibres  which  pass  through  the  Lamina  Spiralis, 
their  ultimate  ramifications  probably  coming  into  close  connection 

with  Corti' 8  rods. 
Not  much  is  known  for  certain  of  the  functions  of  the  various 

parts,  of  the  Internal  ear.  We  have  seen  how  the  vibrations  of  the 
sounding  body  are  transmitted  to,  and  imitated  by,  the  membrane 
of  the  Fenestra  Ovalis.  These  vibrations  are  necessarily  taken  up 

by  the  Perilymph,  which  bathes  its  inner  surface,  and  hence  com- 
municated to  the  Endolymph  of  the  Membranous  Labyrinth  and 

the  Scala  Media.  It  was  formerly  thought,  that  both  of  these 

organs  were  necessary  to  the  perception  of  sound,  but  the  re- 
searches of  Goltz  have  shown  that  the  special  function  of  the 

Labyrinth,  is  to  enable  us  to  perceive  the  turning  of  the  head. 
Thus,  the  only  part  of  the  Internal  Ear  which  is  engaged  in 
transmitting  sound  vibrations  to  the  auditory  nerves,  is  the 
Cochlea. 

The  Basilar  Membrane  of  the  Cochlea  consists  of  a  series  of 

radial  fibres,  lying  side  by  side,  united  by  a  delicate  membrane, 
and  it  is  believed  by  Helmholtz,  that  the  faculty  of  discriminating 
between  sounds  of  different  pitch  is  due  to  these  radial  fibres.  The 

Basilar  Membrane  gradually  increases  in  width,  that  is,  its  radial 

fibres  gradually  increase  in  length,  as  we  pass  from  the  Fenestra 
Ovalis  to  the  apex  of  the  Cochlea,  being  ten  times  as  long  at  the 
latter,  as  at  the  former.  Helmholtz  likens  them  to  a  series  of 

stretched  strings  of  gradually  increasing  lengths,  the  membranous 
connection  between  them  simply  serving  to  give  a  fulcrum  to  the 

pressure  of  the  fluid  against  the  strings.  He  further  assumes 
that  each  of  these  fibres  is  tuned  to  a  note  of  definite  pitch,  and 

capable  of  taking  up  its  vibratory  motion.     He  considers  that  the 
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arches  of  Corti  whicli  rest  on  these  fibres,  serve  the  purpose  of 

transmitting  this  vibratory  motion  to  the  terminal  appendages  of 
the  nerve,  each  arch  being  connected  with  its  own  nerve  ending. 

As  akeady  mentioned,  there  are  about  3,000  of  these  arches  in 
the  human  ear,  which  would  give  about  400  to  the  octave.  When 

a  simple  tone  is  sounded  in  the  neighbourhood  of  the  ear,  the 
radial  fibre  of  the  Basilar  Membrane  in  unison  with  it,  is  supposed 
to  take  up  its  vibrations,  which  are  then  transmitted  by  the  arch 
of  Corti  in  connection  with  it,  to  the  particular  nerve  termination 
with  which  it  is  in  communication. 

For  a  complete  discussion  of  this  theory,  the  reader  is  refen-ed  to 

Helmholtz's  "  Sensations  of  Tone,"  Part  I,  Chap.  vi. 

Summary. 

The  Human  Ear  may  be  divided,  for  descriptive  purposes,  into 
three  parts  :  the  External,  Middle,  and  Internal  ears. 

The  External  ear  consists  of  the  Lohe,  and  the  tube  or  Meatxjts 

leading  inwards,  which  is  closed  by  the  Tympanum. 
The  Middle  ear  contains  a  chain  of  three  small  bones,  the  Malleus, 

Incus,  and  Stapes,  which  serves  to  connect  the  Tympanum  with  the 
Fenestra  Ovalis.  The  air  in  the  cavity  of  the  Middle  ear  is  in 
communication  with  the  external  air,  by  means  of  the  Eustachian 
Tube. 

The  Internal  ear  consists  essentially  of  a  membranous  bag  ot 

exceedingly  complicated  form,  filled  with  a  liquid — Endolymph. 
This  bag  floats  in  another  liquid — Ferilymph— contained  in  a  bony 
cavity,  which  is  separated  from  the  cavity  of  the  Middle  ear  by  the 
membranes  of  the  Fenestra  Ovalis  and  Fenestra  Rotunda. 

The  nerves  of  hearing  ramify  on  the  walls  of  this  membranous 

bag,  and  their  ultimate  fibres  project  into  the  Etidolymph  therein 
contained. 

The  alternate  condensations  and  rarefactions  of  the  sound  waves 

which  enter  the  External  ear,  strike  against  the  Tympanum  and 

set  it  vibrating.  These  vibrations  are  then  transmitted  by  means 
of  the  small  bones  of  the  Middle  ear  to  the  Fenestra  Ovalis,  and 

from  this  again  through  the  Perilymph  and  Endolymph  to  the 
minute  terminations  of  the  auditory  nerve,  which  lie  in  the  latter 

liquid. 

One  particular  part  of  the  membrane  of  the  Internal  ear,  in 
which  lie  the  Fibres  of  Corti,  is  specially  modified,  and  is  supposed 
to  be  the  region  of  the  ear  which  serves  to  discriminate  the  pitch 
and  quality  of  musical  sounds. 
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CHAPTER    IV, 

On  the  Pitch  of  Musical  Sounds. 

In  order  to  fully  describe  a  Musical  Sound,  it  is  necessary,  besides 
specifying  its  duration,  to  particularize  three  things  about  it,  viz., 
its  Pitch,  its  Intensity,  and  its  Quality.  By  pitch  is  meant  its 
height  or  depth  in  the  musical  scale,  by  intensity  its  degree  of 
loudness,  and  by  its  quality,  that  character  which  distinguishes  it 
from  another  sound  of  the  same  pitch  and  intensity. 

In  the  present  chapter  we  have  only  to  do  with  Pitch.  Inasmuch 

as  we  have  seen  that  the  Sensation  of  Sound  is  due  to  the  vibratory 

motion  of  some  body,  the  first  question  that  arises  is, — What  change 
takes  place  in  the  vibratory  movement,  when  the  pitch  of  the  sound 
changes  ? 

If  we  stretch  a  violin  string  loosely,  and  pluck  it,  we  get  a  low 
sound ;  stretch  it  more  tightly,  and  again  pluck  it,  a  higher  sound 
is  obtained,  and  at  the  same  time,  we  can  see  that  it  is  vibrating 

more  rapidly.  Again,  take  in  the  same  way  a  short  and  a  long 
tongue  of  metal,  and  the  former  will  be  found  to  give  a  higher 
sound  and  to  vibrate  more  quickly  than  the  latter. 

But  the  instrument  that  best  shows  the  fact,  that  the  more  rapid 

the  rate  of  vibration,  the  higher  is  the  pitch  of  the  sound  produced, 

is  perhaps  the  Wheel  Syren  (fig.  19).  This  consists  of  a  disc  of 
zinc  or  other  metal,  about  18  inches  or  more  in  diameter,  mounted 

on  a  horizontal  axis,  and  capable  of  being  rapidly  revolved  by  means 

of  a  multiplying  wheel.  The  disc  is  perforated  by  a  number  of 

holes  an-anged  in  concentric  circles,  all  the  holes  in  each  circle  being 
the  same  distance  apart.  In  order  to  work  the  instrument,  a  current 

of  air  is  blown  through  an  India-rubber  tuhe  and  jet,  against  one 

of  the  circles  of  holes  while  the  disc  is  slowly  revolving.  Whenever 

a  perforation  comes  in  front  of  the  jet,  a  pulf  of  air  passes  through, 
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causing  a  condensation  on  the 
other  side.  The  current  of  air  is 

immediately  cut  off  by  the  revolu- 
tion  of  the  disc,  and  consequently 
a  rarefaction  follows  the  previous 

condensation — in  short,  a  complete 
sound  wave  is  formed.  Another 

hole  appears  opposite  the  jet,  and 
another  wave  follows  the  first, 
and  so  on,  one  wave  for  each  hole. 
While  the  disc  is  being  slowly 
revolved,  the  waves  do  not  follow 

one  another  quickly  enough  to 

give  rise  to  a  musical  sound, — 
each  puff  is  heard  separately;  but 
on  gradually  increasing  the  speed, 
they  succeed  each  other  more  and 

more  quickly,  till  at  last  a  low 
musical  sound  is  heard.  If  we 
now  still  further  increase  the 

speed,  the  pitch  of  the  sound  will 
gradually  rise  in  proportion. 

Savart's  toothed  wheel  (fig.  4, 
p.  6  )  is  another  instrument  which 
proves  the  same  fact.  While  the 
wheel  is  being  slowly  turned,  each 

tap  on  the  card  is  heard  separately,  but  on  increasing  the  speed, 
we  get  a  musical  sound,  which  rises  in  pitch  as  the  rate  of 
revolution  increases,  that  is,  as  the  rate  of  vibration  of  the  card 
increases. 

We  see,  therefore,  that  the  pitch  of  a  sound  depends  upon  the 
vibration  rate  of  the  body,  which  gives  rise  to  it.  By  the  vibration 

rate,  is  meant  the  number  of  complete  vibrations — journeys  to  and 
fro — which  it  makes  in  a  given  time.  In  expressing  the  vibration 
rate,  it  is  most  convenient  to  take  a  second  as  the  unit  of  time. 

The  pitch  of  any  sound  may  therefore  be  defined,  by  stating  the 

number  of  vibrations  per  second  requii'ed  to  produce  it;  and  to 
avoid  circumlocution,  this  number  may  be  termed  the  "  vibration 
number"  of  that  sound.  We  shall  now  proceed  to  describe  the 
principal  methods  which  have  been  devised  for  ascertaining  the 
vibration  number  of  any  given  sound. 
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One  of  the  earliest  instruments  constructed  for  this  purpose  was 

Savart's  toothed  wheel  (fig.  4)  which  has  just  been  referred  to.  A 
registering  apparatus,  H,  which  can  bo  instantly  connected  or  dis- 

connected with  the  toothed  wheel  by  touching  a  spring,  records  the 
number  of  revolutions  made  by  it.  In  order  to  discover  the 
vibration  number  of  any  given  sound,  the  velocity  of  the  wheel 
must  be  gradually  increased  until  the  sound  it  produces  is  in  unison 
with  the  given  sound.  The  registering  apparatus  is  now  thrown 
into  action,  while  the  same  speed  of  rotation  is  maintained  for  a 
certain  time,  say  a  minute.  The  number  of  revolutions  the  wheel 

makes  during  this  time,  multiplied  by  the  number  of  teeth  on  the 
wheel,  gives  the  number  of  vibrations  performed  in  one  minute. 

This  number  divided  by  60  gives  the  number  of  vibrations  per 
second  required  to  produce  the  given  sound,  that  is,  its  vibration 
number. 

Cagniard  de  Latour's  Syren  is  an  instrument  constructed  on  the 
same  principle  as  the  Wheel  Syren,  but  different  in  detail.     Two 

Fio.  20.  FiQ.  21. 

brass  discs,  rather  more"  than  an  inch  in  diameter,  are  each  simi- 
laily  pierced  with  the  same  number  of  holes  arranged  in  a  circle 

20  &  21).     The  upper  disc  revolves  with  the  least  possible 
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amount  of  friction  on  the  lower  one,  which  is  stationary,  and  forms 
the  upper  side  of  a  wind  chest.  When  air  is  forced  into  this  chest 
by  means  of  the  tube  below,  and  the  disc  is  made  to  revolve,  a  puff 
will  pass  through  each  hole,  every  time  the  holes  coincide.  Thus, 
supposing  there  are  15  holes,  they  will  coincide  15  times  for  every 
revolution,  and  therefore  one  revolution  will  give  rise  to  15 
sound  waves.  By  an  ingenious  device,  which,  however,  in  the 
long  run  is  a  disadvantage,  the  current  of  air  itself  moves  the 

upper  disc.  This  is  brought  about  by  boring  the  holes  in  the  upper 
disc  in  a  slanting  direction,  while  those  in  the  lower  one  are  bored 
in  the  opposite  direction,  as  shown  in  fig.  21.  On  the  upper  part 
of  the  axis  of  the  revolving  disc,  a  screw  is  cut,  in  the  threads  of 

which  work  the  teeth  of  the  wheel  shown  on  the  left  in  fig.  21, 
Further,  the  right  hand  wheel  in  fig.  21  is  so  connected  with  the 
left  hand  one,  that  while  the  latter  makes  one  revolution  the  former 

moves  only  one  tooth.  Each  of  these  wheels  has  100  teeth.  On 
the  front  of  the  instrument  (fig.  20)  are  two  dials,  each  divided  into 
100  parts  corresponding  to  the  100  teeth  on  each  of  the  wheels,  the 
axles  of  which  passing  through  the  centre  of  the  dials,  carry  the 
hands  seen  in  the  figure.  Thus  the  right  hand  dial  records  the 
number  of  single  revolutions  up  to  100,  and  the  left  hand  one  the 
number  of  hundreds.  Finally,  this  registering  apparatus  can  be 

instantly  thrown  in  and  out  of  gear,  by  pushing  the  nuts  seen  on 
both  sides. 

Suppose  now  we  wish  to  obtain,  by  means  of  this  instrument,  the 
vibration  number  of  a  certain  sound  on  a  harmonium  or  organ. 

"We  first  see  that  the  registering  apparatus  is  out  of  gear,  and  then 
placing  the  syren  in  connection  with  an  acoustical  bellows,  gradually 
blow  air  into  the  instrument.  This  causes  the  disc  to  revolve,  and 

at  the  same  time  a  sound,  at  first  low,  but  gradually  rising  in  pitch, 
is  heard.  As  we  continue  to  increase  the  wind  pressure,  the  pitch 

gradually  rises  until  at  last  it  is  in  unison  with  the  sound  we  are 
testing.  Having  now  got  the  two  into  exact  unison,  we  throw 
the  registering  apparatus  into  gear,  and  maintain  the  same  rate  of 
rotation,  that  is,  keep  the  two  sounds  at  the  same  pitch  for  a 

measured  interval  of  time — say  one  minute.  At  the  expiration  of 

this  time  the  recording  apparatus  is  thrown  out  of  gear  again.  "We 
now  read  off  the  number  cf  revolutions:  suppose  the  dial  on  the 
left  stands  at  21, and  that  on  the  right  36,  then  we  know  the  disc 
has  made  2,136  revolutions.  Multiply  this  by  15  (for  we  have 
seen  that  each  revolution  gives  rise  to  15  waves),  and  we  get  32,040 
as  the  number  of  waves  given  off  in  one  minute.     Divide  this  by 
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60,  and  the  quotient,  534.  is  the  vibration  number  of  the  given sound. 

Fig.  22. 
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Although  this  instrument  does  very  well  for  piu'poses  of  lecture 
illustration,  it  has  several  practical  defects.  When,  for  instance,  the 

registering  apparatus  is  thrown  into  gear,  the  increased  work  which 
the  wind  has  to  perform  in  turning  the  cogwheels,  slackens  the 
speed,  and  consequently  lowers  the  pitch.  Then,  again,  it  is  very 

difficult  to  keep  the  blast  at  a  constant  pressure — that  is,  to  keep  the 
sound  steady.  Further,  there  is  an  opening  for  error  in  noting  the 
exact  time  of  opening  and  closing  the  recording  apparatus.  From 
these  causes,  this  form  of  Syren  cannot  be  depended  upon,  according 
to  Mr.  Ellis,  within  ten  vibrations  per  second. 

Helmholtz  has  devised  a  form  of  Syren,  in  which  these  soiuces  of 
error  are  avoided.  It  consists  really  of  two  Syrens,  A  and  B,  fig. 
22,  facing  one  another,  the  discs  of  which  are  both  mounted  on 
the  same  axis,  and  driven  with  uniform  velocity,  not  by  the 

pressure  of  the  wind,  but  by  an  electro-motor.  Each  disc  has  4 
circles  of  equidistant  holes,  the  number  of  holes  in  the  circles 
being,  in  the  lower  disc  8,  10,  12,  18,  and  in  the  upper  9,  12,  15,  16 

respectively.  By  means  of  the  handles  1,  2,  3,  &c.,  projecting 
from  the  wind  chests,  any  or  all  of  these  circles  may  be  closed  or 
opened,  so  that  two  or  any  number  of  sounds  up  to  eight,  may  be 
heard  simultaneously. 

Knowing  the  length  of  a  stretched  string,  the  stretching  weight, 
and  the  weight  of  the  string  itself,  it  is  possible  to  ascertain  the 
vibration  number  of  the  sound  it  gives  by  calculation.  The 
instrument  used  in  applying  this  method,  is  termed  a  Sonometer 

Fig    2.'J. 

or  Monochord.  It  consists  (fig.  23)  of  a  sound  box  of  wood, 
about  5  feet  long,  7  inches  broad,  and  5  inches  deep.  A  steel 
wire  is  fastened  to  a  peg  at  one  end,  passes  over  bridges  as  shown 
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in  the  figure,  and  is  stretched  by  a  weight  at  the  other.  The  sound 
is  evolved  by  drawing  a  violin  bow  over  the  wire.  In  order  to  find 
the  vibrational  number  of  any  given  sound,  the  wire  is  first  tuned 

in  unison  with  it,  by  varying  the  length  of  the  wire  (by  means  of 
the  movable  bridge  shown  in  fig.  23)  or  the  stretching  weight. 
This  weight  is  then  noted,  and  the  vibrating  part  of  the  wire 
measured  and  weighed.  If  the  number  of  grains  in  the  stretch- 

ing weight  (including  the  weight  of  the  adjacent  non- vibrating 
part  of  the  wire)  be  denoted  by  W;  the  number  of  inches  in  the 

vibrating  wire  by  L  ;  and  the  number  of  grains  in  the  same  by  iv ; 
then  the  vibrational  number  is 

2  ̂   IJTxT 
P  being  the  length  of  the  seconds  pendulum  at  the  place  of  obser- 

vation, [=  39*14  at  Greenwich),  and  v  the  constant  3-14159. 
Although  theoretically  perfect,  the  practical  difficulties  of  determin- 
mg  the  unison,  measuring  the  length,  ascertaining  the  weights, 
obtaining  perfect  uniformity  in  the  wire,  keeping  the  temperature 
constant,  together  with  those  arising  from  the  thickness  of  the  wire, 

are  so  great,  as  to  render  this  method  of  no  avail  whero  uc^iir^'i'y  is 
required. 

A  far  more  accurate  method  of  counting  vibrations  is  that  known 
as  the  Graphic  method,  which  is,  however,  only  applicable  in  general 

to  tuning-forks.  The  principle  of  this  method  will  be  readily 
understood  on  reference  to  fig.  24.  A  light  style  is  attached  to  one 

of  the  prongs  of  a  tuning  fork.      A  piece  of  paper  or  glass,  which 

Fm.  24. 

has  been  coated  with  lamp-black  by  holding  it  in  the  smoke  of 
burning  camphor  or  turpentine,  is  placed  below  the  tuning  fork  so 
that  the  style  just  touches  it.  If  now,  while  the  glass  remains  at 
rest,  the  fork  be  set  in  vibration,  the  style  will  trace  a  straight  line 

on  the  glass  or  paper,  by  removing  the  lamp  black  in  its  path  as  it 
moves  to  and  fro.      But  if  the  glass  be  moved  rapidly  and  steadily 
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in  the  direction  of  the  fork's  length,  a  complete  record  of  the  motion 
of  the  fork  will  be  left  on  the  lamp-blacked  surface  in  the  form  of 
a  wavy  line,  each  double  sinuosity  in  which  will  correspond  to  a 
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complete  vibration  of  the  fork.  A  more  convenient  arrangement 

is  to  fasten  the  lamp-blacked  paper  round  a  rotating  cylinder,  -which 
is  also  made  to  travel  slowly  from  right  to  left  by  means  of  a  screw 
on  the  axis,  so  as  to  prevent  the  tracing  from  overlapping  itself.  If 
this  cylinder  be  kept  lotating  for  a  certain  number  of  seconds,  the 
number  of  sinuosities  traced  in  that  time  can  be  counted;  we  have 

then  only  to  divide  this  number  by  the  number  of  seconds,  to  obtain 
the  vibration  number  of  the  fork. 

This  method  has  been  brought  to  a  very  high  degree  of  perfection 

by  Professor  Mayer,  of  New  Jersey.  He  uses  lamp-blacked  paper, 
wrapped  round  a  rotating  metallic  cylinder  or  drum,  as  above 
described.  The  wave  curve  is  traced  on  this  by  an  aluminium  style, 
attached  to  the  end  of  one  of  the  prongs  of  the  tuning  fork  under 
examination.  A  pendulum  (a,  fig.  25),  beating  seconds,  has  a 

platinum  wedge  fastened  to  it  below,  which,  at  every  swing,  makes 
contact  with  a  small  basin  containing  mercury.  This  basin  is  in 

communication  with  one  pole  of  a  battery  (&),  a  wire  from  the  other 

pole  being  attached  to  the  primary  coil  {p)  of  an  inductorium,  from 

which  again  a  wire  proceeds  to  the  top  of  the  pendulum.  The  wii-e 
from  one  end  of  the  secondary  coil  (s)  is  attached  to  the  stem  of 

the  tuning  fork  {t),  and  that  from  the  other  end  to  the  revolving 

cylinder  (d).  When  the  apparatus  is  at  work,  it  is  obvious  that 
a  spark  will  pierce  the   smoked  J9 

paper  at  every  contact  of  the  pen- 
dulum with  the  mercury,  leaving 

a  minute  perforation.  The  number  ̂  
of  complete  sinuosities  between 
two  consecutive  perforations,  will 

consequently  be  the  vibration 
number  of  the  fork. 

A  new  instrument  for  counting 

rapid  vibrations,  called  by  its  in- 
ventors, the  Cycloscope,  was  de- 

vised a  few  years  ago  by  McLcod 

and  Clarke.  A  diagrammatic  re- 
presentation of  the  essential  parts 

of  the  apparatus  is  shown  in  fig. 
26.     A  is  a  drum,  rotating  on  a  L^ 

horizontal  axis,    and    capable   of  | 
being  revolved  at  any  definite  rate.  I 

Fig.  26 

c-^ 
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Round  tliis  is  fastened  a  strip  of  dark  paper  B,  ruled  with  equidistant 

white  lines.  C  is  a  2"  objective,  giving  an  image  of  the  white  lines, 
which  is  viewed  through  the  microscope,  D.  The  tuning-fork  {t)  to 
be  tested  is  fastened  vertically  in  a  vice,  so  that  one  of  the  prongs 
is  situated  in  the  common  focus  in  such  a  way  as  to  obscure  about 
one-fourth  of  the  field  of  view.  Thus,  on  looking  through  the 
microscope  when  everything  is  at  rest,  an  image  of  the  white  lines 
is  seen,  and  the  part  of  the  prong  (a,  fig.  27  A),  of  the  tuning-fork 

Fig.  27  (A). Fia.  27  (B). 

partially  obscuring  them ;  (i)  is  a  scale  fixed  in  the  eye-piece. 
When  the  fork  is  set  vibrating  and  the  drum  is  rapidly  rotated, 
the  lines  can  no  longer  be  separately  distinguished ;  but,  just 
as,  in  the  Graphic  method,  we  found  a  wave  to  result  from  two 

movements  at  right  angles,  so  by  the  composition  of  the  fork's 
motion  with  that  of  the  white  lines,  a  wave  makes  its  appearance, 
(fig.  27,  B).  If  the  white  lines  pass  through  a  space  equal  to  the 
distance  between  two  of  them,  while  the  fork  makes  one  vibration, 
then  the  length  of  the  wave  will  be  the  distance  between  two  white 
lines  as  seen  through  the  microscope ;  furthermore,  if  this  is  the 

case  exactly,  the  waves  will  appear  stationarj^.  If,  however,  the 
drum  rotates  faster  or  slower  than  this,  the  wave  will  have  a  slow 
apparent  motion,  either  upwards  or  downwards.  As  the  velocity 
of  rotation  of  the  drum  is  under  the  control  of  the  observer,  it 
is  easy  to  keep  it  at  such  a  speed,  that  the  wave  appears 
stationary,  that  is,  at  such  a  speed  that  the  white  lines  pass 
through  a  space  equal  to  the  distance  between  two  of  them  while 
the  fork  makes  one  vibration.  It  follows,  therefore,  that  the 
number  of  white  lines  that  pass  over  the  field  of  view  during  the 
time  of  the  experiment,  is  equal  to  the  number  of  vibrations 
executed  by  the  fork  in  that  time.  An  electric  pendulum,  beating 
seconds,  gives  the  time,  while  an  electric  counter  records  the  num- 

ber of  revolutions  made  by  the  drum.  A  fine  pointed  tube,  filled 
with  magenta,  automatically  marks  the  paper  on  the  drum  at  the 
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beginning  and  end  of  the  experiment,  so  as  to  give  the  fractional 

part  of  a  revolution.  The  number  of  white  lines  that  pass  the 
field  of  view  is  thus  easily  obtained,  by  multiplying  the  number  of 
white  lines  round  the  drum  by  the  number  of  revolutions  and 

fractional  part  of  a  revolution  made  by  it.  This,  divided  by  the 
number  of  seconds  the  experiment  lasted,  gives  the  vibration 
number  of  the  fork.  In  the  hands  of  the  inventors,  this  instrimient 

has  given  extremely  accurate  results. 
Another  very  accurate  counting  instrument  is  the  Tonometer,  an 

account  of  which  is  deferred,  untU  the  principles  on  which  it  is 
constructed  have  been  explained  (see  Chap.  xiii). 

The  exactness  with  which  pitch  can  now  be  determined,  is  shown 

by  the  following  abridged  table,  taken  from  Mr.  Ellis's  "  History  of 
Musical  Pitch,"  p.  402.  In  the  first  column  are  the  names  of  five 
particular  forks,  the  vibrational  numbers  of  which  are  given  in  the 
second,  third,  and  fourth  columns,  as  determined  independently  by 
McLeod  with  the  Cycloscope,  Ellis  with  the  Tonometer,  and  Mayer 
with  his  modification  of  the  Graphic  method,  respectively. 

Name  of  fork. Mc  Leod. Ellis. Mayer. 

Conservatoire 
Tuileries 
Fevdeau 
Versailles 
Marloye 

439-55 
434-33 
423-02 
395-83 
255-98 

439-54 
434-25 
423-01 
395-79 
255-96 

439-51 
434-33 
422-98 
395-78 25602 

Knowing  the  velocity  of  sound  in  air,  and  having  ascertained  the 
vibrational  rate  of  any  sounding  body  by  one  of  the  preceding 
methods,  it  is  easy  to  deduce  the  length  of  the  sound  waves  emitted 

by  it.     For,  taking  the  velocity  of  sound  as  1,100  feet  per  second, 

suppose  a  tuning-fork,  the  vibration  number  of  which  is  say  1 00, 
to  vibrate  for  exactly  one  second.     During  this  time  it  will  have 

given  rise  to  exactly  100  waves,  the  first  of  which  at  the  end  of  tht? 
second  will  be  1,100  feet  distant  from  the  fork  ;  the  second  one  wi/ 

be  immediately  behind  the  first,  and  the  third  behind  the  second,  an 

so  on :  the  last  one  emitted  being  close  to  the  fork.     Thus  the  com- 
bined lengths  of  the  100  waves  wiU  evidently  be  1,100  feet,  and  aa 

they  are  all  equal  in  length,  the  length  of  one  wave  will  be 
1100 

Too  =  " 
 <•'• 
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To  find  the  wave  length  of  any  sound,  therefore,  it  is  only  necessary 
to  divide  the  velocity  of  sound  by  the  vibration  number  of  the 
sound  in  question.  It  will  be  noticed  that  as  the  velocity  of  sound 
varies  with  the  temperature  of  the  air,  so  the  wave  length  of  any 
particular  sound  must  vary  with  the  temperature. 

We  have  seen  that  the  pitch  of  any  sound  depends  ultimately 
upon  the  rapidity  with  which  the  sound  waves  strike  the  tympanum 
of  the  ear,  and  usually  this  corresponds  with  the  rate  of  vibration 
of  the  sounding  body.  If,  however,  from  any  cause,  more  sound 
waves  from  the  sounding  body,  strike  the  ear,  in  a  given  time,  than 
are  emitted  from  it  during  that  time,  the  apparent  pitch  of  the  note 
will  be  correspondingly  raised,  and  vice  versa.  Such  a  case  occurs 
when  the  sounding  body  is  moving  towards  or  from  us,  or  when  we 
ire  advancing  or  receding  from  the  sounding  body.  When,  for 
example,  a  locomotive,  with  the  whistle  sounding,  is  advancing 
rapidly  towards  the  observer,  the  pitch  will  appear  perceptibly 
sharper  than  after  it  has  passed.  This  fact  may  be  easily  illustrated 
by  fastening  a  whistle  in  one  end  of  a  piece  of  india-rubber  tubing 
4  or  5  feet  long,  and  blowing  through  the  other  ;  at  the  same  time 
whirling  the  tube  in  a  horizontal  circle  above  the  head.  A  person 
at  a  distance  will  perceive  a  rise  in  pitch  as  the  whistle  is  advancing 
towards  him  and  a  fall  as  it  recedes. 

The  lowest  sound  used  in  music,  is  found  in  the  lowest  note  of 
the  largest  modern  organs,  and  is  produced  by  16^  vibrations  per 
second  ;  but  so  little  of  musical  character  does  it  possess,  that  it  is 
never  used  except  with  its  higher  octaves.  The  musical  character 
continues  to  be  very  imperfect  for  some  distance  above  this  limit ; 

in  fact,  until  we  get  to  above  twice  this  number  of  vibrations  per 
second.  The  highest  limit  of  musical  pitch  at  the  present  time  is 

about  C*,  a  sound  corresponding  to  about  4,000  vibrations  per 
second.  Very  much  higher  sounds  than  this  can  be  heard,  but 
they  are  too  shrill  to  be  of  any  use  in  music.  Fig.  28,  which 
explains  itself,  shows  the  limits  of  pitch  of  the  chief  musical 
instruments. 

The  note  C  in  the  treble  staff  is  the  sound  that  musicians  usually 
take  as  a  basis  of  pitch ;  this,  once  fixed,  all  the  other  sounds  of 
the  musical  scale  are  readily  determined.  But,  unfortunately,  at 
the  present  day,  there  are  a  very  large  number  of  vibration 
numbers,  corresponding  to  this  note ;  in  other  words»  there  is  no 

universally  recognised  standard.  It  appears  from  Mr.  Ellis's  paper 
on  "The  History  of  Musical  Pitch"  that  the  vibration  numbei 
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Human  Voice. 
1st  Soprano  .. 
2nd  Soprano .. 
1st  Contralto.. 
2nd  Contralto 
1st  Tenor    
2nd  Tenor   
1st  Bass   
2nd  Bass   

Bow  Instruments. 
Violin    
Viola      
Violoncello   
Double  Bass   

Pizzicato  Instru- 
ments. 

Guitar   
Mandolin     
Harp   

Beed  Instruments. 
Oboe      
English  Horn    
Bassoon    
Clarinet    

Tube  Instruments. 
Flute      
Piccolo      

Wind  Instruments 
of  Brass. 

Horns  in  E,D,  C,  &c   
Trumpet   
Comet   
Trombone,  Alto     
„  Tenor   
„  Bass    

Ophecleide   
Bombardon      

Key-Board  Instru- 
ments. 

Pianoforte   
Harmonium    
Organ    

C4I6   C382 C264  Cil28 
C256 

cisia  C2 1024 

m 
c=» 

2048 

C* 

4096
 

Fig.  28. 
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corresponding  to  C  has  been  gradually  rising  for  many  years.    The 
following  are  a  few  of  the  chief  standards. 

Standard. A C 

Diapason  Normal,  1859 

Society  of  Arts,  1886              
Tonic  Sol-fa   

Pianoforte  Manufacturers'  Association,  New  ] 
York,  1891                            J 

Philharmonic,  1897    . .          . .          . . 
before  1897   

KnellerHall,  1890   

Crystal  Palace               

435 

439 

517-3 
517-3 
517-3 

517-3 
522 

538 

538 
538 

Summary. 

A  musical  sound  has  three  elements  :  Pitch,  Intensity,  and 
Quality, 

The  Pitch  of  a  musical  sound  depends  solely  upon  the  vibration 
rate  of  the  body  that  gives  rise  to  it. 

The  Vibration  Number  of  a  given  musical  sound  is  the  number 
of  vibrations  per  second  necessary  to  produce  a  sound  of  that 
particular  pitch. 

The  principal  instruments  which  have  been  used  from  time 
to  time  in  determining  the  vibration  numbers  of  musical  sounds 
are : 

Savart's  Toothed  Wheel. 
The  Syren. 
The  Sonometer  or  Monochord. 

Mayer's  Graphic  Method. 
The  Cycloscope. 
The  Tonometer. 

The  last  three  are  by  far  the  most  accurate. 
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To  ascertain  the  wave  length  of  any  given  sound — Divide  the 
velocity  of  sound  by  its  vibration  number. 

The  wave  length  of  any  given  sound,  increases  with  the  tem- 
perature. 

The  temperature  remaining  constant,  the  length  of  the  sound 
wave  determines  the  pitch  of  the  sound  produced. 

The  range  of  musical  pitch  is  from  about  40  to  4,000  vibrations 
per  second. 
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CHAPTER    V. 

The  Melodic  Eeultions  of  the  Sounds  of  the  Common  Scale. 

In  describing  the  form  of  Syren  devised  by  Helmholtz,  it  was 
mentioned,  that  the  lower  revolving  plate  was  pierced  with  four 
circles  of  8,  10,  12,  and  18  holes,  and  the  upper  with  four  circles  of 

9,  12,  15,  and  16.  If  only  the  *'8-hole  circle"  on  the  lower  and 
the  "  16-hole"  circle  on  the  upper  be  opened,  while  the  Syren  is 
working,  two  sounds  are  produced,  the  interval  between  which,  the 
musician  at  once  recognises  as  the  Octave.  When  the  speed  of  rotation 
is  increasedjboth  sounds  rise  in  pitch,  but  they  always  remain  an 
Octave  apart.  The  same  interval  is  heard,  if  the  circles  of  9  and  18 
holes  be  opened  together.  It  follows  from  these  experiments,  that 
when  two  sounds  are  at  the  interval  of  an  Octave,  the  vibrational 
number  of  the  higher  one  is  exactly  twice  that  of  the  lower.  An 
Octave,  therefore,  may  be  acoustically  defined  as  the  interval 
between  two  soimds,  the  vibration  number  of  the  higher  of  which 
is  twice  that  of  the  lower.  Musically,  it  may  be  distinguished  from 
all  other  intervals  by  the  fact,  that,  if  any  particular  sound  be 
taken,  another  sound  an  octave  above  this,  another  an  octave  above 
this  last,  and  so  on,  and  all  these  be  simultaneously  produced,  there 

is  nothing  in  the  resulting  sound  unpleasant  to  the  eaj*. 
Since  the  ratio  of  the  vibration  numbers  of  two  soimds  at  the 

interval  of  an  octave  is  as  2  :  1,  it  is  easy  to  divide  the  whole  range 
of  musical  sound  into  octaves.  Taking  the  lowest  sound  to  be 
produced  by  16  vibrations  per  second,  we  have 

1st  Octave,  from      16    to       32  vibrations  per  second. 
2nd 

32 

to       64 

3rd 64 to     128 

4th 
128 to     266 

5th 266 to     612 

6th 612 to  1,024 
7th 

1,024 to  2,048 
8th „        2,048 to  4,096 

Thus  all  the  sounds  used  in  music  are  comprised  within  the  compass 
of  about  eight  octaves. 
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Eetuming  to  the  Syren:  if  the  8  and  12  "hole  circles"  be  opened 
together,  we  hear  two  sounds  at  an  interval  of  a  Fifth,  and  as  in 
the  case  of  the  octave,  this  is  the  fact,  whatever  the  velocity  of 
rotation.  The  same  result  is  obtained  on  opening  the  10  and  15, 
or  the  12  and  18  circles.  When,  therefore,  two  sounds  are  at  an 
interval  of  a  Fifth,  for  every  8  vibrations  of  the  lower  sound,  there 
are  12  of  the  upper,  or  for  every  10  of  the  lower  there  are  15  of  the 
upper,  or  for  every  12  of  the  lower  there  are  18  of  the  upper.     But 

8 12  : 
:  2 

3. 

10 15  : 
:  2 

3 12 
18  : :  2 3 

Therefore  two  sounds  are  at  the  interval  of  a  Fifth  when  their 
vibration  numbers  are  as  2  to  3;  that  is  when  2  vibrations  of  the 
one  are  performed  in  exactly  the  same  time  as  3  vibrations  of 
the  other.  This  may  be  conveniently  expressed  by  saying  that  the 

vibration  ratio  or  vibration  fraction  of  a  Fifth  is  3:2  or  |^. 
Similarly  the  vibration  ratio  of  an  Octave  is  2  :  1  or  |. 

Again,  on  opening  the  circles  of  8  and  10  holes,  two  sounds  are 
heard  at  the  interval  of  a  Major  Third.  The  same  interval  is 
obtained  with  the  12  and  15  circles.  Now  8  :  10  : :  4  :  5  and 
12  :  15  : :  4  :  5.  Therefore  two  sounds  are  at  the  interval  of  a 

Major  Third,  when  their  vibration  numbers  are  as  4  :  5 ;  or  more 
concisely,  the  vibration  ratio  of  a  Major  Third  is  |. 
With  the  results,  thus  experimentally  obtained,  it  is  easy  to 

calculate  the  vibration  numbers  of  aU  the  other  sounds  of  the 
musical  scale,  when  the  vibration  number  of  one  is  given.  For 
example,  let  the  vibration  number  of  d  be  288,  or  shortly,  let 
d  =  288  ;  then  the  higher  Octave  d'  =  288  X  2  =  576.  Also  the 
vibration  ratio  of  a  Fifth  =  | ;  therefore  the  vibration  number  of 
S  is  to  that  of  d,  as  3  :  2;  that  is,  s  =  f  X  288  =  432.  Similarly 

the  interval  }  ̂  is  a  Major  Third;  but  the  vibration  ratio  of  a 
Major  Third  we  have  found  to  be,  J;  therefore  n  :  d  : :  5  :  4,  that 

is  n  =  4  X  288  =  360.  Again,  {*  is  a  Major  Third;  therefore 

t  =  f  X  432  =  540.  Further,  j  ^'  is  a  Fifth;  therefore 
r"  =  I  X  432  =  648,  and  its  lower  octave  r  =  ̂ ^  =  324.  It  only 

remains  to  obtain  the  vibration  numbers  of  f  and  1.  Now  j  f'  is 
a  Fifth,  thus  the  vibrational  number  of  f  is  to  that  of  d'  as  2  :  3 ; 

therefore  f  =  f  X  576  =  384  ;  and  j  J  is  a  Major  Third,  con- 
sequently 1  =  384  X  I  =  480.     Tabulating  these  results  we  have 
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d' 

= 576. 

t = 540. 

1 = 480. 

s = 432. 

f zn 384. 

n = 360. 

r =: 324. 

d nz 288. 

The  vibration  numbers  of  tbe  upper  or  lower  octaves  of  tbese  notes, 
are  of  course  at  once  obtained  by  doubling  or  halving  them. 

It  will  be  noticed  that  a  scale  may  be  constructed  on  any  vibration 
number  as  a  foundation.  The  only  reason  for  selecting  288  was,  to 
avoid  fractious  of  a  vibration  and  so  simplify  the  calculations.  As 
another  example  let  us  take  d  =  200.  Proceeding  in  the  same  way 
as  before,  but  tabulating  at  once,  for  the  sake  of  brevity,  we  get 

d'  =    200  X  2  =  400.  (2). 

t    =  MJ  X  f  =  375.  (5). 

1    =  266§  X  f  =  3331.  (8). 

S    _   2M  X  f  =  300.  (3). 

f    -   £M  X  I  =  266|.  (7). 

n    =  ̂   X  f  =  250.  (4). 

r    =  ̂ M  x|xl=  225.       .  (6). 
d   =  =  200.  (1). 

We  may  now  adopt  the  reverse  process,  that  is,  from  the  vibration 
numbers,  obtain  the  vibration  ratios.  For  example,  using  the  first 
scale,  we  find  that  the  vibration  number  of  t  is  to  that  of  n  as 

640  :  360,  that  is  (dividing  each  by  180,  for  the  purpose  of  simpli- 
fying) as  3  :  2  ;  or  more  concisely 

tt      __     640     __     3 
}m  360  2 

The  interval  j  ̂  is  therefore  a  perfect  Fifth.    Again, 
I  1     _     480 
f  r  324 

Now  the  vibration  fraction  of  a  perfect  Fifth  =  |  =  |f^,  therefore 

j  J  is  not  a  perfect  Fifth.  We  shall  return  to  this  matter  further 
on,  at  present  it  will  be  sufficient  to  notice  the  fact.     The  student 
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must  take  particular  care  not  to  subtract  or  add  vibration  numbers 
in  order  to  find  the  interval  between  them;  thus  the  difference 
between  the  vibration  numbers  of  t  and  n  in  the  second  scale  is 
875  —  250  =  125,  but  this  does  not  express  the  interval  between 
them,  viz.,  a  Fifth,  but  merely  the  difference  between  the  vibration 
numbers  of  these  particular  sounds.  To  make  this  clearer,  take 
the  difference  between  the  vibration  numbers  of  d  and  s  in  the 

second  table  =  300  —  200  =  100,  and  between  d  and  s  in  the 
first  =  432  —  288  =  144.  Here  we  have  different  results,  although 
the  interval  is  the  same.  Take  the  ratio,  however,  and  we  shall  get 
the  same  in  each  case  for 

aoo  _-  1  and  i^^  ̂   2. 
2  00  2  2  8H  2' 

We  shall  now  proceed  to  ascertain  the  vibration  ratios  of  the 
intervals  between  the  successive  sounds  of  the  scale,  using  the  first 
of  the  two  scales  given  on  the  preceding  page  : — 

d' 

t 
= 576 

540 
= 96 

90 
= 

16 

15 

= 540 

480 
= 54 48 = 9 

8 

= 480 
432 

= 120 
108 = 10 

=r 
432 

384 

== 54 

48 
= 9 

8 

= 384 
360 

= 
96 

90 
= 

16 

15 

=t 360 

324 

= 90 

81 
= 10 

9 

r 
d 

= 324 
288 

= 
81 72 

= 9 

8 

There  are,  therefore,  three  kinds  of  intervals  between  the 
consecutive  sounds  of  the  scale,  the  vibration  ratios  of  which  are 

9  J^j  and  11 .  The  first  of  these  intervals,  which  has  been  termed 
the  Greater  Step  or  Major  Tone,  occurs  three  times  in  the  diatonic 
scale,  viz., 

)1      \'      )l 
The  next  is  the  Smaller  Step  or  Minor  Tone,  and  is  found  twice, 
viz., 

11     f? 
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The  last  is  tlie  Diatonic  Semitone,  and  also  occurs  twice,  viz., 

(X.        (m 
We  may  now  calculate  the  vibration  ratios  of  the  remaining 

intervals  of  the  scale,      j  J  may  be  selected  as  the  type  of  the 
Fourth.     Taking  again  the  vibration  numbers  of  the  first  scale,  the 
vibi-ation  ratio  of  this  interval  is 

384      _      96             8      _      4 

288      ~"      72      —      6      —      3 

This  result  may  be  verified  on  the  Syren  by  opening  the  12  and  9  or 
16  and  12  circles. 

Taking  j  ^  as  an  example  of  a  Minor  Third,  its  vibration  ratio  is 
432           !?     _     !? 

360      —      40  5' 

This  can  also  be  verified  by  the  Syren  with  the  12  and  10  circles. 

Again,  the  vibration  ratio  of  { ̂  *  Minor  Sixth,  is 
676             72             8 

S^      —      45      —      5* 

and  this,  too,  may  be  confirmed  on  the  Syren,  with  the  16  and  10 
circle. 

The  vibration  ratio  of   j  ^,  a  Major  Sixth,  is 
480  CO             5^ 

2S8      —      36  3' 

which  may  be  confirmed  with  the  15  and  9  circles. 

The  vibration  ratio  of  the  Major  Seventh  }^  is 

540           r>5           15 

2^    -~     72"  8  ' 
and  this  can  be  verified  with  the  15  and  8  circles. 

The  vibration  ratio  of  the  Minor  Seventh  j  |^^  is 

3^4           %•           16 
2T6  64  9  ' 

capable  of  verification  with  the  16  and  9  circles. 

The  vibration  fraction  of  the  Diminished  Fifth  j  J^  is 
884            64 

270  45 ' 

and  that  of  the  Tritone,  or  Pluperfect  Fourth  j  \  is 
540             90             45 

3S4  64  32- 
In  order  to  find  the  vibration  ratio  of  the  sum  of  two  intervals, 

the  vibration  ratios  of  which  are  given,  it  is  only  necessary  to 
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multiply  them  together  as  if  they  were  vulgar  fractions,  thus^ 

given  j^  =  f ,  and   {5  =  f  ;  to  find   j  «  :- 
^8_65_6_3 

U     —     I      >^      I     ~     I     —     2' 
which  we  akeady  know  to  be  the  case.  The  reason  of  the  process 

may  be  seen  from  the  following  considerations.  From  j  ̂  =^  | , 

and  j  ̂  =  f  we  know  that, 
for  every  6  vibrations  of  s,  there  are  5  of  n  ; 

and    ,,      ,,     5        ,,  ,,  n,      ,,     ,,    4  ,,  d; 
Therefore     ,,      ,,     6        ,,  ,,    s,       ,,     ,,    4  ,,  d; 

that  is     ,,       ,,     3        ,,  ,,   s,      „     ,,    2  ,,  d. 

Again,  in  order  to  find  the  vibration  ratio  of  the  difference  of  two 
intervals,  the  vibration  ratios  of  which  are  given,  the  greater  of 
these  must  be  divided  by  the  less,  just  as  if  they  were  vulgar 

fractions.      For  example,  given    <  ̂'  =  f ,  and  j  ̂  =  |,  to  find 
I  m 

^d'_2_^5_2  1_8 

Im      —     1       '      4     ~     1     ̂     5    ~     ~b' 

The  reason  for  the  rule  will  be  seen  from  the  following  considera- 
tions.    From  the  given  vibration  ratios  we  know  that, 

for  every  2  vibrations  of  d',  there  is  1  of  d  ; 
that  is     ,,       ,,     8  ,,       ,,    d',     ,,     are  4  ,,   d; 

and     ,,       ,,     4  ,,       ,,    d,      ,,       „  5   ,,    n; 

therefore    ,,       ,,     8  ,,       „    d',     ,,       ,,  5  ,,   n. 

We  shall  apply  this  rule,  to  find  the  vibration  ratios  of  a  few 
other  intervals.  The  Greater  Chromatic  Semitone  is  the  difference 

between  the  Greater  Step  and  the  Diatonic  Semitone.  |  ̂  is  an 
example  of  the  Greater  Chromatic  Semitone,  being  the  difference 

between  j  |  a  Greater  Step,  and  j  ̂  a  Diatonic  Semitone.  Now 

j  I  =  I,  and  j  ^^  =  If  (for  it  is  the  same  interval  as  j  ^') ;  therefore 
tfe         ?_i_l^         ?    N/     i^         ̂ ^ 
?   f  8       •       15  8  16  128* 

The  Lesser  Chromatic  Semitone  is  the  difference  between  the 

Smaller  Step  and  the  Diatonic  Semitone  ;  |  ^^,  for  example,  which 

is  the  difference  between  j^  and  j ̂̂ .  Now  j^  =  -^  and 

\^\   =    }d'   =   If;  therefore 
I  se         ̂ ^    ,!_    1^         —    s(     -         — 
f    8  "O        •       16  9  16  24* 
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This  is  also  the  difference  between  a  Major  and  a  ]Minor  Third,  for 
5.6             5  5            25 
4"^5  4      ̂      6  24 

The  interval  between  the  Greater  and  Lesser  Chromatic  Semitones 
will  be 

135   .   25      135       24      81 

128  "^   24       128   ̂    25       80  » 

which  is  usually  termed  the  Comma  or  Komma. 

Ileferring  to  the  first  table  of  vibration  numbers  on  page  i6,  we 
have  1  =  480,  and  r  =  324  ;  therefore 

i  1           480           40. 

(  r  324  27' 
and  thus,  as  noticed  above,  it  is  not  a  Perfect  Fifth.     To  form  a 

Perfect  Fifth  with  1,  a  note  r'  would  be  required,  such  that 

!^=  -. 
f  r*  2 

It  is  easy  to  find  the  vibration  number  of  this  note  if  that  of  1  be 

given,  thus:- 
11     _     8 

that  is,  ̂ =   ?; 

therefore  I_  =    ?, 
480            3 480 

1 

=    3-20. 

This  note  has  been  tenned  rah  or  grave  r,  and  may  be  conveniently 

written,  r'.     Similarly  j  ^  is  not  a  true  Minor  Third,  for  its  vibration ratio  is 
13.±  _  10  =  1J2  : 
324  HI  27  ' 

but  j  Jx  is  a  true  Minor  Third,  for  its  vibration  ratio  is 
38.1  =  iB  =  ii 

320  40  5* 
The  interval  between  r  and  r^  is  the  comma,  its  vibration  ratio 
being  evidently 

324     —     81 
320  80 

Summary. 

The  sounds  used  in  Music  lie  within  the  compass  of  about  eight 
Octaves. 

The  vibration  ratio  or  vibration  fraction  of  an  interval,  is  the 
ratio  of  the  vibration  numbers  of  the  two  sounds  forming  that 
intei-val. 

The  vibration  ratios  of  the  principal  musical  intervals  have  been 

exactly  verified  by  Helmholtz's  modification  of  the  Double  Syren. 
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It  may  be  shown,  by  means  of  this  instrument,  that  the  vibration 
numbers  of  the  three  tones  of  a  Major  Triad,  in  its  normal  position 

—  |e,   or      I  m,  for  example, — areas 
(c        •     (d 4:5:6. 

Starting  from  this  experimental  foundation,  the  vibration  numbers 
of  all  the  tones  of  the  modern  scale  can  readily  be  calculated  on  any 
basis ;  and  from  these  results,  the  vibration  ratio  of  any  interval 
used  in  modern  music  may  be  obtained. 

Vibration  ratios  must  never  be  added  or  suhtraded. 

To  find  the  vibration  ratio  of  the  sum  of  two  or  more  intervals, 
multiply  their  vibration  ratios  together. 

To  find  the  vibration  ratio  of  the  difference  of  two  intervals,  divide 
the  vibration  ratio  of  the  greater  interval  by  that  of  the  smaller. 

The  vibration  ratios  of  the  principal  intervals  of  the  modem 
musical  scale  are  as  follows : — 

Komma     -----  Iff 

Lesser  Chromatic  Semitone         -  f  | 

Greater        „                „               "  ril 

Diatonic  Semitone      -         -        -  yf 

Smaller  Step  or  Minor  Tone        -  \y- 

Greater  Step  or  Major  Tone        -  | 

Minor  Third      -        -         -         -  | 

Major  Third      -         -        -        -  f 
Fourth    I 

Tritone    || 

Diminished  Fifth       -        -        -  6  4 

Fifth    I 

■^                     Minor  Sixth       -        '        '        '  i 

Major  Sixth      »        -         -        -  ^ 

Minor  Seventh  ---"-/ 

Major  Seventh  -        -         -        -  -»- 2 
Octave      -----  Y 

To  find  the  vibration  ratio  of  any  of  the  above  intervals  increased 

by  an  Octave,  multiply  by  | ;  thus  the  vibration  ratio  of  a  Major 
Tenth  is  ^         „         ,„         . 

5.    V     2    —    10    —   5 
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CHAPTER    VI 

On  the  Intensity  or  Loudness  of  Musical  Sounds. 

We  have  seen  that  the  pitch  of  a  sound  depends  solel}'  upon  the 
rapidity  with  which  the  vibrations  succeed  one  another.  We  have 

next  to  study  the  question:  "Upon  what  does  the  Loudness  or 
Intensity  of  a  sound  depend  ?  " 

Gently  pluck  a  violin  string.  Notice  the  intensity  of  the  result- 

ing sound,  and  also  observe  the  extent  or  amplitude  of  the  string's 
vibration.  Pluck  it  harder;  a  louder  sound  is  heard,  and  the  string 
is  seen  to  vibrate  through  a  greater  space.  Pluck  it  harder  still ; 
a  yet  louder  sound  is  produced,  and  the  amplitude  of  the  vibrations 
is  still  greater.  We  may  conclude,  from  this  experiment,  that  as 
long  as  we  keep  to  the  same  sounding  body,  the  intensity  of  the 
sound  it  produces,  depends  upon  the  amplitude  of  its  vibrations ; 
the  greater  the  amplitude,  the  louder  the  sound.  This  fact  may  be 
strikingly  illustrated  by  the  following  experiment.  Fasten  a  style 
of  paper,  or  better  still,  parchment,  to  one  prong  of  a  large 
tuning-fork.  Coat  a  slip  of  glass  on  one  side  with  lamp- 

black, and  lay  it,  with  the  coated  side  upwards,  on  a  smooth  board. 

Fig.  29. 

having  previously  nailed  on  the  latter  a  straight  strip  of  wood,  to 
serve  as  a  guide  in  subsequently  moving  the  glass  slip.  Now 
strike  the  fork  sharply,  and  immediately  hold  it  parallel  to  tht 
glass,  in  such  away,  that  the  vibrating  style  just  touches  the  lamp« 



INTENSITY  OF  MUSICAL  SOUNDS,  ^ 

black.  Move  the  glass  slip  slowly  along  under  the  tuning-fork. 
The  latter,  as  it  vibrates,  will  remove  the  lamp-black,  and  leave  a 

clean  wedge-shaped  trace  on  the  glass,  as  seen  in  fig.  29.  As  the 
width  of  the  trace  at  any  point  is  evidently  the  amplitude  of  the 
vibration  of  the  fork,  at  the  time  that  point  was  below  it,  we  see 

that  the  amplitude  of  the  vibrations  of  the  fork  gradually  decreases 
till  the  fork  comes  to  rest;  and  as  the  sound  decreases  gradually  till 
the  fork  becomes  silent,  we  see  that  the  intensity  of  its  sound 
depends  upon  the  amplitude  of  its  vibrations. 

It  is  obvious,  that  the  greater  the  amplitude  of  the  vibrations  of 
a  sounding  body,  the  greater  will  be  the  amplitude  of  the  vibration.s 

of  the  air  particles  in  its  neighbourhood  ;  thus  we  may  conclude, 
that  the  intensity  of  a  sound  depends  upon  the  amplitude  of  vibra- 

tion of  the  air  particles  in  the  sound  wave.  But  it  is  a  matter  of 
common  experience,  that  a  sound  becomes  fainter  and  fainter,  the 
farther  we  depart  from  its  origin  ;  therefore,  we  must  limit  the 

above  statement  thus  :  the  intensity  of  a  given  sound,  as  perceived 
by  our  ears,  depends  upon  the  amplitude  of  those  air  particles  of 
its  sound  wave,  which  are  in  the  immediate  neighbourhood  of  our 

ears.  This  leads  us  to  the  question  :  "  At  what  rate  does  the  in- 

tensity of  a  sound  diminish,  as  wo  recede  from  its  origin  ?  "  We 
may  ascertain  the  answer  to  this  question,  by  proceeding  as  in  the 
analogous  case  of  heat  or  light.  Thus,  let  A,  fig.  80  be  tlie  origin 
of  a  given  sound.  At  centre  A,  and  with  radii  of  say  1  yd.,  2  yds., 

3  3'ds.,  describe  three  imaginaiy  spheres,  B,  C,  D.  Now,  looking 
on  sound,  for  the  moment,  as  a  quantity,  it  is  evident  that  the  quan- 

tity of  sound  which  passes  through  the  surface  of  the  sphere  B  is 
identical  with  the  quantity  that  passes  through  the  surface  of  the 
spheres  0  and  D.  But  the  surfaces  of  spheres  vary  as  the  squares 
of  their  radii ;  therefore,  as  the  radii  of  the  spheres  B,  C,  and  D 

are  1,  2,  and  3  yds.  respectively,  their  surfaces  are  as  1^  :  2*  :  3*' 
that  is,  the  spherical  surface  C  is  four  times  as  great,  and  D  9  times 
as  great,  as  the  spherical  surface  B.  We  see,  therefore,  that  the 

quantity  of  sound,  which  passes  through  the  surface  of  B,  is,  as  it 
were,  spread  out  fourfold  as  it  passes  through  C,  and  ninefold  as  it 
passes  through  D.  It  follows,  therefore,  that  one  square  inch  of  C 
will  only  receive  ̂   as  much  sound  as  a  square  inch  of  B,  and  one 

square  inch  of  D  only  J-  as  much.  Thus,  at  distances  of  1,  2,  3, 
from  a  sounding  bodj%  the  intensities  are  as  1,  \,  and  I ;  that  is,  as 

we  recede  from  a  sounding  body,  the  intensity  diminishes  in  pro- 

portion to  the  square  of  our  distance  from  the  body,  or  more  con- 
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cisely,   '*  The  intensity  of  a  sound  varies  inversely  as  the  square  ol 
the  distance  from  its  origin. 

Fio.  30. 

It  should  be  clearly  noted,  however,  that  the  conditions  under 

which  the  above  "law  of  inverse  squares,"  as  it  is  called,  is  true, 
rarely  or  never  obtain.  The  chief  disturbing  elements  in  the 
application  of  this  law  are  echoes.  AVhen  a  ray  of  light  strikes 
any  reflecting  surface  at  right  angles,  it  is  reflected  back  in  the 
direction  whence  it  came.  If  a  ray  of  light,  A  C,  fig.  31,  does  not 
fall  at  right  angles  upon  a  reflecting  surface  P  Q,  it  is  reflected 
along  a  line  C  B,  which  is  so  situated,  that  the  angle  B  C  H  is  equal 
to  the  angle  A  C  H ;  H  C  being  at  right  angles  to  P  Q.  Just  so 
with  sound.  A  person  standing  at  B  would  hear  a  sound  from  A, 
first  as  it  reaches  him  in  the  direction  A  B,  and  directly  after, 
along  the  line  C  B.  If  the  distances  A  B  and  A  C  B  were  each 
only  a  few  yards,  the  two  sounds  would  be  indistinguishable, 
but  if  there  were  any  considerable  difference  between  these   two 
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distances,  tlie  two  sounds  would  be  separately  heard,  tlie  latter  being 

termed  the  echo  of  the  former.  Therefore,  when  a  vibrating  body- 
emits  a  sound  in  any  room  or  hall,  the  waves  which  proceed  from 
it  in  all  directions,  strike  the  walls,  floor,  ceiling,  and  also  the 

reflecting  surfaces  of  the  various  objects  in  the  place,  and  are  re- 
flected again  and  again  from  them.  Thus  the  direct  and  reflected 

sounds  coalesce,  and  interfere  with  one  another,  in  the  most  com- 
plicated manner,  and  the  simple  law  of  inverse  squares  is  no  longer 

applicable.  This  is  still  the  case,  even  in  the  open  air,  away  from 

all  surrounding  objects,  for  the  ground  will  here  present  a  reflect- 
ing surface,  and  other  invisible  reflectors  are  found,  as  Professor 

Tyndall  has  shown,  in  the  surfaces  which  separate  bodies  of  air  of 
different  hygrometric  states  and  of  different  temperatures. 

This  maj'-  be  put  in  another  way.  It  is  a  condition  of  the  truth 
of  the  law  of  inverse  squares,  as  above  shown,  that  the  sound 
shall  be  able  to  spread  outwards  in  all  directions  ;  if  this  is  not  the 
case,  the  law  no  longer  holds  good.  Now,  in  a  building,  this  is  not 
the  case ;  the  sound  is  prevented  from  spreading  by  the  roof,  floor, 
and  walls.  If  the  sound  can  be  entirely  prevented  from  spreading, 

its  intensity  will  not  diminish  at  all.  This  is  the  principle  of  the 

speaking  tube.  In  this  instrument,  the  vibrations  of  the  air  par- 
ticles are  transmitted  undiminished,  except  by  friction  against  the 

side  of  the  tube,  and  by  that  part  of  the  motion  which  is  given  up 
to  the  substance  of  the  tube  itself ;  thus  sound  can  be  transmitted 

to  great  distances  in  such  tubes.  Eegnault,  experimenting  with 
the  sewer  conduits  of  Paris,  found  that  the  report  of  a  pistol  was 

audible  through  them,  for  a  distance  of  6  miles. 

The  bad  acoustical  properties  of  a  bitilding  are  generally  due  to 

echoes.  A  sound  from  the  lips  of  a  speaker,  in  a  building,  reaches 

the  ear  of  the  listener  directly,  and  also  after  one  or  more  reflections 

from  the  ceiling,  walls,  floor,  and  so  on.     If  the  building  be  of  con- 
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eiderable  dimensions,  these  echoes  may  reach  the  listener's  ear  at 
an  appreciable  inteiTal  of  time  after  the  direct  sound,  or  after  one 
another,  and  will  then  so  combine  with  the  succeeding  direct  sound 

from  the  speaker  as  to  make  his  words  quite  indistinguishable. 
The  roof  is  often  the  chief  culprit  in  this  matter,  especially  when 
lofty,  and  constructed  of  wood,  this  latter  affording  an  excellent 
reflecting  surface.  An  obvious  remedy  is  to  cover  such  a 

surface  with  some  badly-reflecting  substance,  such  as  a  textile 

fabric.  A  sound-board  over  the  speaker's  head,  will  also  prevent 
the  sound  from  passing  directly  to  the  roof.  The  bodies  and  clothes 
of  the  persons  forming  an  audience,  are  also  valuable  in  preventing 
echoes.  Professor  Tyndall,  to  whose  work  on  sound  the  student  is 
referred  for  further  information  on  this  subject,  says  that,  having 

to  deliver  a  lecture  in  a  certain  hall,  he  tried  its  acoustical  proper- 
ties beforehand,  and  was  startled  to  find  that  when  he  spoke  from 

the  platfoim,  a  friend  he  had  with  him,  seated  in  the  body  of  the 
empty  hall,  could  not  distinguish  a  word,  in  consequence  of  the 
echoes.  Subsequently,  when  the  hall  was  filled  with  people,  the 
Professor  had  no  difficulty  in  making  himself  distinctly  heard  in 
every  part.  Again,  everyone  must  have  noticed  the  difference 
between  speaking  in  an  empty  and  uncarpeted  room,  in  which  the 
echoes  reinforce  the  direct  sound,  and  speaking  in  the  same  room 

carpeted,  and  furnished,  the  echoes  in  this  case  being  deadened  by 
the  carpets,  curtains,  &c. 

Summary. 

The  Intensity  of  the  sound  produced  by  a  vibratory,  body,  depends 
upon  the  amplitude  of  its  vibrations. 

The  Intensity  of  a  sound  varies  inversely  as  the  square  of  the 
distance  from  its  origin,  only  when  the  sound  waves  can  radiate 
freely  in  all  directions  without  interruption. 

Sound  is  reflected  from  elastic  surfaces  in  the  same  way  as  light, 
thereby  producing  echoes. 

Sound  is  well  reflected  from  such  surfaces  as  wood,  iron,  stone, 

&c.,  while  cloths,  carpets,  curtains,  and  textile  fabrics  in  general, 
scarcely  reflect  at  all. 
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CHAPTER    VII. 

Eesonance,  Co-vibratiox,  or  Sympathy  of  Tones. 

Select  two  tuning-forks  which  are  exactly  in  unison.  Having 
taken  one  in  each  hand,  strike  that  in  the  right  hand  pretty  sharply, 
and  immediately  hold  it  with  its  prongs  parallel,  and  close  to  the 

prongs  of  the  other,  but  without  touching  it.  After  the  lapse  of 
not  less  than  one  second,  on  damping  the  fork  in  the  right  hand, 
that  in  the  left  will  be  found  to  be  giving  out  a  feeble  tone.  To 

this  phenomenon,  the  names  of  Eesonance,  Co  vibration,  and 
Sympathy  of  tones  have  been  given,  the  first  being  the  one  most 
commonly  used  in  English  works.  The  explanation  of  this  effect 
will  be  better  understood  after  a  consideration  of  the  following 

analogous  experiment. 

Let  a  heavy  weight  be  suspended  at  the  end  of  a  long  cord,  and 
to  it  attach  a  fibre  of  silk  or  cotton.  The  weight  being  at  rest,  pull 

the  fibre  gently  so  as  not  to  break  it.  The  weight  will  thus  be 

pulled  forwards  through  an  exceedingly  small,  perhaps  imper- 
ceptible distance.  Now  relax  the  pull  on  the  fibre,  till  the 

weight  has  swung  through  its  original  position,  and  reached 
the  limit  of  its  backward  movement.  If  another  gentle  pull 

be  then  given,  the  weight  will  swing  forward  a  trifle  further 
than  at  first.  The  weight  then  swings  backwards  as  before, 

and  again  a  properly-timed  pull  will  still  further  extend  its 
excursion.  By  proceeding  in  this  way,  after  a  time,  the  total  effect 
of  these  accumulated  impulses  will  have  been  suflBcient  to  impart 

to  the  weight  a  considerable  oscillation.  On  examination  it  will  be 
found  that  this  experiment  is  analogous  to  the  last  one.  The 

regularly  timed  impulses  in  the  second  experiment,  correspond  to 
the  regularly  vibrating  fork  in  the  right  hand ;  the  weight  to  the 
fork  in  the  left  hand,  and  the  fibre  to  the  air  between  the  forks. 
And  here  it  must  be  observed,  that  just  as  the  forks  execute  their 
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vibrations  in  equal  times,  whether  their  amplitudes  be  great  or  small, 
so  the  weight  performs  its  swings  (as  long  as  they  are  not  too 
violent)  in  equal  times,  whether  their  range  be  small  or  great. 
Again,  the  conditions  of  success  are  the  same  in  both  cases  ;  for,  in 
the  first  place,  the  impulses  in  the  second  experiment  must  bo 
exactly  timed,  that  is,  they  must  be  repeated  at  an  interval  of  time 
which  is  identical  with  the  time  taken  by  the  weight  to  perform  a 
complete  swing.  In  other  words,  the  hand  which  pulls  the  fibre 
must  move  in  perfect  unison  with  the  weight.  If  this  were  not  so, 

the  impulses  would  destroy  one  another's  effects.  Just  so  with  the 
forks  ;  they  must  be  in  the  most  rigorous  unison,  in  order  that  the 
effects  of  the  impulses  may  accumulate.  Again,  in  each  experiment 
a  certain  lapse  of  time  is  necessary  to  allow  the  effects  of  the  suc- 

cessive impulses  to  accumulate. 

The  complete  explanation  of  the  experiment  with  the  two  tuniug- 
forks  is  as  follows.  Let  the  prong  A  of  the  fork  in  the  right  hand 
be  supposed  to  be  advancing  in  the  direction  of  the  non- vibrating 
fork  B  ;  the  air  between  A  and  B  will  be  compressed,  and  thus  the 
pressure  on  this  side  of  the  prong  B  will  be  greater  than  that  on 
the  other;  the  latter  prong  will  therefore  move  through  an 
infinitesimal  space  away  from  A.  Now  suppose  the  prong  A  has 
reached  its  extreme  position  and  is  returning ;  then,  as  both  forks 
execute  their  vibrations  in  exactly  equal  times,  whether  these  be 
of  large  or  small  extent,  it  follows  that  B  must  be  returning  also  ; 
but  as  A  moves  through  a  greater  space  than  B,  the  air  between 
the  two  will  become  rarefied,  and  thus  the  pressure  on  this  side  of  B 
will  be  less  than  that  on  the  other  ;  B  will  therefore  receive  another 
impulse,  which  will  slightly  increase  its  amplitude.  On  its  return, 
it  will  receive  another  slight  impulse,  and  thus,  by  these  minute 
successive  additions,  the  amplitude  is  soon  sufficiently  increased  to 
produce  an  audible  sound. 

In  the  preceding  experiment,  the  exciting  fork  communicates  a 
small  portion  of  its  motion  to  the  air  between  the  forks,  and  then 

this  latter  gives  up  pai-t  of  its  motion  to  the  other  fork.  Now,  as 
the  density  or  weight  of  air  is  so  exceedingly  small  in  comparison 
with  that  of  the  steel  fork,  the  amplitude  of  the  vibrations  thus  set 
up  in  the  latter  must  necossaiily  be  always  very  small,  that  is,  its 
sound  will  be  very  faint.  By  using  a  medium  of  greater  elasti- 

city, the  sound  may  be  obtained  of  sufficient  intensity  to  be 
heard  by  several  persons  at  once.  Thus,  let  one  fork  be  struck 
sharply,  and  the  end  be  immediately  applied  to  a  sounding  board. 
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on  which  the  end  of  the  non- vibrating  fork  is  already  resting;  after 
the  lapse  of  a  second  or  so,  the  latter  will  be  heard  giving  forth  a 
Bound  of  considerable  intensity,  the  motion  in  this  case  having 
been  transmitted  through  the  board. 

The  following  experiments  illustrate  the  phenomenon  of 

resonance  or  co-vibration  in  the  case  of  stretched  strings.  Press 
down  the  loud  pedal  of  a  pianoforte,  so  as  to  raise  the  dampers 

from  the  stiings.  Each  sound  on  the  pianoforte  is  generally  pro- 
duced by  the  vibration  of  two  or  three  wires  tuned  in  unison.  Set  one 

of  these  vibrating,  by  plucking  it  with  the  finger.  After  the  lapse  of 
a  second  or  so,  damp  it,  and  the  other  wire  will  be  heard  vibrating. 
Again,  having  raised  the  dampers  of  a  pianoforte,  sing  loudly  any 

note  of  the  piano,  near  and  towards  the  sound-board.  On  ceasing, 
the  piano  will  be  heard  sending  back  the  sound  sung  into  it.  The 
full  meaning  of  this  experiment  will  be  explained  hereafter. 

The  resonance  of  strings  may  be  visibly  demonstrated  to  an 

audience  in  the  following  manner.  Tune  two  strings  on  the  mono- 

chord  or  any  sound-board,  in  perfect  unison,  and  upon  one  of  them 
place  a  rider  of  thin  cardboard  or  paper.  On  bowing  the  other 

string  very  gently,  the  rider  will  be  violently  agitated,  and  on  in- 
creasing the  force  of  the  bowing,  will  be  thrown  off. 

In  these  experiments  the  sound-board  plays  an  important,  or 
rather  an  essential  part.  Thus,  in  the  above  experiment  with  the 

piano,  the  sound  waves  from  the  larynx  of  the  singer  strike  the 
sound-board  of  the  piano,  setting  up  vibrations  in  it,  which  are 
communicated  through  the  bridges  to  the  wires.  It  will  be  found 
that  in  these  experiments  with  stretched  strings,  such  perfection  of 
unison  as  was  necessary  with  the  forks  is  not  absolutely  essential, 
and  the  reason  is  obvious ;  for  in  the  first  place,  the  medium  by 
which  the  vibrations  are  communicated  in  the  former,  viz.,  the 

wood,  is  much  more  elastic  than  in  the  latter ;  and  secondly,  the 

light  string  or  wire  is  much  more  easily  set  in  vibration  than  the 

heavy  steel  of  the  fork.  A  smaller  number  of  impulses  is  therefore 

sufficient  to  excite  the  string,  and  consequently  such  a  rigorous 

unison  is  not  absolutely  essential.  As  we  might  expect,  however, 

the  more  exact  the  unison,  the  louder  is  the  sound  produced. 

In  consequence  of  their  small  density,  masses  of  enclosed  air  are 

very  readily  thrown  into  powerful  co-vibration.  Strike  a  C  tuning- 

fork,  and  hold  the  vibrating  prongs  over  the  end  of  an  open  tube, 

about  13  inches  long  and  about  an  inch  in  diameter.  The  sound  of 

the  fork,  which  before  was  very  faint,  swells  out  with  considerable 
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intensity.  The  material  of  the  tube  is  without  influence  on  the 
result.  A  sheet  of  paper  rolled  up  so  as  to  form  a  tube  answers 
very  well.  On  experimenting  with  tubes  of  different  lengths,  it 

will  be  found  that  the  sound  of  the  C  fork  is  most  powerfully  re- 
inforced by  a  tube  of  a  certain  length,  viz.,  about  13  inches. 

A  slightly  shorter  or  longer  tube  will  resound  to  a  smaller  extent, 
but  little  resonance  will  be  obtained,  if  it  differs  much  from  the 

length  given.  Before  reading  the  following  explanation  of  this 
phenomenon,  the  student  should  read  over  again  the  account  given 
in  Chapter  II  of  the  propagation  of  sound. 

Let  A  B,  fig.  32,  represent  the  tube,  with  the  vibrating  tuning-fork 
above  it.  As  the  lower  prong  of  the  latter  descends,  it  will  press  upon 
the  air  particles  beneath  it,  giving  rise  to  a  condensation,  AC. 

The  particles  in  A  C  being  thus  crowded  together, 

press  upon  those  below,  giving  rise  to  a  condensa- 
tion C  D ;  the  particles  in  which,  in  their  turn, 

press  upon  those  beneath,  thus  transmitting  the 
wave  of  condensation  to  D  E.  In  this  way,  the 
condensation  passes  through  the  tube,  and  at  length 
reaches  the  end,  E  B.  The  crowded  particles  in 
E  B  will  now  press  outwards  in  all  directions,  and 
overshooting  the  mark,  will  leave  the  remainder 
farther  apart  than  they  originally  were  ;  that  is,  a 
rarefaction  will  be  formed  in  EB.  But  as  there  is 

now  less  pressure  in  EB  than  in  DE,  the  particles 
of  air  in  the  latter  space  will  tend  to  move  towards 
E  B,  and  they  themselves  will  be  left  wider  apart 

than  before;  that  is,  the  rarefaction  will  be  trans- 
mitted from  BE  to  E D,  and  in  like  manner  will 

pass  up  the  tube  till  it  reaches  A  C.  On  arriving 
here,  as  the  pressure  in  A  C  will  be  less  than  the 

pressure  outside  the  tube,  the  air  particles  will 

crowd  in  from  the  exterior  and  give  rise  to  a  con- 
densation. Thus,  to  recapitulate;  the  downward 

movement  of  the  prong  gives  rise  to  a  slight  condensation  in  the 
tube  below;  this  travels  down  the  tube  to  B,  where  it  is  reflected  as 

a  pulse  of  rarefaction;  this,  rushing  back,  on  reaching  A  is  changed 
again  to  a  pulse  of  condensation.  Now  if,  while  this  has  been  going 
on,  the  fork  has  just  made  one  complete  vibration,  the  lower  prong 
will  now  be  coming  down  again  as  at  first,  and  thus  will  cause  an 
increase  in  the  degree  of  condensation.  The  same  cycle  of  change 

will  take  place  as  before,  and  will  recur  again  and  again,  the  degree 

Fto.  82. 



BESONANCE. 61 

of  condensation  and  rarefaction,  tliat  is,  the  intensity  of  the  sound, 

rapidly  increasing  to  a  maximum.  To  compare  this  with  the  ex- 

periment of  the  suspended  weight : — the  vibrations  of  the  fork  cor- 
respond to  the  properly  timed  impulses,  and  the  air  in  the  tube  to 

the  suspended  body  :  and,  just  as  in  that  experiment,  the  essential 
point  was  the  proper  timing  of  the  impulses,  so  in  this  case  the 
essential  matter  is,  that  the  downward  journey  of  the  condensation, 
shall  coincide  with  the  downward  movement  of  the  prong.  In 
order  that  this  coincidence  may  occur  each  time,  it  is  evident  that 
the  wave  must  travel  down  and  up  the  tube,  in  exactly  the  same 
time  that  the  fork  makes  one  vibration ;  that  is,  while  the  fork 

makes  one  vibration  the  sound  must  travel  twice  the  length  of  the 

tube.  Moreover,  every  vibration  of  the  fork  gives  rise  to  one  sound 
wave ;  therefore,  in  order  that  a  tube  open  at  both  ends  may  give 
its  maximum  resonance  when  excited  by  a  fork,  it  must  be  half  as 

long  as  the  sound  wave  originated  by  that  fork. 

It  will  be  seen  that  a  certain  amount  of  resonance  is  obtained  if 

the  tube  is  twice  this  length;  for  in  that  case,  every  alternate 
descent  of  the  prong  will  coincide  with  a  condensation  below,  and 
each  alternate  ascent  with  a  rarefaction ;  but  such  resonance  will 

evidently  be  much  feebler.  For  intermediate  lengths,  the  fork  will 
soon  be  in  opposition  to  the  pulses  in  the  tube,  and  thus  no 
resonance  can  result. 

Tubes  closed  at  one  end  are  termed  stopped  tubes ;  with  these  the 
case  is  somewhat  different.  Let  AB,  fig  33,  represent  a  stopped 

tube,  the  lower  prong  of  the  tuning-fork  above, 
being  about  to  descend  towards  it.  As  we  have 
already  seen,  this  gives  rise  to  a  condensation  A  C, 
which  travels  down  to  B  D.  The  air  particles  in 

B  D,  having  no  way  of  escape,  save  backwards, 
press  upon  those  in  C  D,  and  thus  the  condensation 
is  reflected  back  to  C  D,  and  finally  to  AC.  From 
here  some  of  the  condensed  particles  escape  into  the 

external  air,  leaving  the  remaining  particles  slightly 

wider  apart ;  that  is,  a  slight  rarefaction  is  foimed. 
If  while  this  has  been  taking  place,  the  prong  has 

reached  its  lowest  position  and  is  just  returning, 
this  movement  will  have  the  effect  of  increasing 

the  rarefaction .   This  latter  will  then  be  transmitted 

down  the  tube  to  BD.     On  reaching  this,  there       
will  be  less  pressure  in  B  D   than   in   D  C,  and         Fio.  33- 
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consequently  the  air  particles  in  the  latter  will  crowd  into  the 
former,  causing  a  rarefaction  in  0  D.  In  this  way  the  rarefaction 
is  transmitted  back  to  AC.  As  the  pressure  of  the  external  air 
will  now  be  greater  than  that  in  A  C,  air  particles  from  the  former 
will  crowd  in,  forming  a  condensation  in  A  C.  If  at  this  moment, 
the  prong  is  a  second  time  beginning  its  descent,  this  condensation 
will  be  increased,  and  the  same  series  of  changes  will  take  place  as 
before.  It  is  evident,  therefore,  that  the  sound  wave  must  make 
two  complete  journeys  up  and  down  the  tube,  while  the  fork  is 
executing  one  vibration ;  that  is,  in  order  that  a  stopped  tube  when 
€xcited  by  a  fork,  may  give  its  maximum  resonance,  it  must  be  ̂  
as  long  as  the  sound  wave  originated  by  that  fork. 

We  have  already  seen,  that  the  length  of  the  sound  wave  pro- 
duced by  a  sounding  body,  may  be  ascertained  by  dividing  the 

velocity  of  sound  by  the  vibration  number  of  that  body;  con- 
sequently it  is  easy  to  calculate  the  length  of  tube,  either  open  or 

stopped,  which  will  resound  to  a  note  of  given  pitch.  The  rule 
■evidently  is :  divide  the  velocity  of  sound  by  the  vibration  number 
of  the  note ;  half  this  quotient  will  give  the  length  of  the  open 
pipe,  and  one  fourth  will  give  the  length  of  the  stopped  one.  It  is 
necessary  that  the  tube  should  be  of  moderate  diameter,  or  the 
rule  will  not  hold  good,  even  approximately. 

The  resonance  of  stopped  tubes  may  easily  be  illustrated,  by 
means  of  glass  tubes,  corked,  or  otherwise  closed  at  one  end.  On 

holding  a  vibrating  tuning-fork  over  the  open  end  of  a  sufficiently 
long  tube,  held  with  its  mouth  upwards,  and  slowly  pouring  in 
water,  the  sound  will  swell  out  when  the  vibrating  column  of  air  is 
of  the  requisite  length,  the  water  serving  the  purpose  of  gradually 
shortening  the  column.  For  small  forks,  test  tubes,  such  as  are 
used  in  chemical  work,  are  very  convenient. 

It  is  by  no  means  necessary  that  the  resounding  masses  of  air 
should  be  in  the  form  of  a  cylinder ;  this  shape  was  selected  for  the 
sake  of  simplicity  in  explanation.  Almost  any  shaped  mass  of 
enclosed  air  will  resound  to  some  particular  note.  Everyone  must 
have  noticed,  that  the  air  in  a  gas  globe,  vase,  &c.,  resounds,  when 
some  particular  sound  is  loudly  sung  near  it.  The  following  is  an 
interesting  method  of  optically  illustrating  this  phenomenon.  A, 
fig.  34,  is  a  cylinder  3  or  4  inches  in  diameter,  and  5  or  6  inches 
long,  with  an  open  mouth,  B.  The  other  end  is  covered  with  an 
elastic  membrane,  D,  such  as  sheet  india-rubber  slightly  stretched, 
thin  paper,  or  membrane.     At  C  is  fastened  a  silk  fibre,  bearing  a 
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drop  of  sealing  wax,  hanging  down  like  a  pendulum  against  the 
membrane.  If  now  anyone  places  himself  in  front  of  the  aperture, 
and  sings  up  and  down  the  scale,  on  reaching  some  particular  sound 
the  pendulum  will  be  violently  agitated,  showing  that  the  mem- 

brane and  the  air  within  the  bottle  are  vibrating  in  unison  with 
that  note. 

Another  simple  experiment  of  the  same  kind  can  be  performed 
with  a  common  tumbler.     Moisten  a  piece  of  thin  paper  with  gum. 

and  cover  the  mouth  of  tlie  tumbler  with  it,  keeping  the  paper  od 

the  stretch.  When  dry  cut  away  a  part  of  the  paper  as  seen  in  fig. 

35.     Put  a  few  grains  of  sand,  or  any  light  substance  on  the  cover. 
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and  then  tilt  up  the  glass,  so  that  the  sand  will  nearly,  but  not 
quite,  roll  off.  Having  fixed  the  glass  in  this  position,  sing  loudly 
up  and  down  the  scale.  On  reaching  a  certain  note,  the  co- vibration 
of  the  air  in  the  tumbler  will  set  the  paper  and  sand  into  violent 
vibration.  By  singing  a  sound  of  exactly  the  same  pitch  as  that 
to  which  the  air  in  the  tumbler  resounds,  the  sand  may  be  moved 
when  the  singer  is  several  yards  away. 

The  phenomenon  of  resonance  is  taken  advantage  of,  in  the  con- 
struction of  resonating  boxes.  These  are  simply  boxes  (fig.  36), 

generally  made  of  wood,  with  either  one  or  two  opposite  ends  open, 

Fig.  36. 

and  oi  such  dimensions,  that  the  enclosed  mass  of  air  will  resound 
to  the  tuning-fork  to  be  attached  to  the  box.  Such  boxes  greatly 
strengthen  the  sound  of  the  fork,  by  resonance ;  the  vibration  being 
communicated,  through  the  wood  of  the  box,  to  the  air  inside.  It 
may  be  remarked  here,  that  the  sound  of  a  fork  attached  to  a 
resonance  box  of  proper  dimensions,  does  not  last  so  long  as  it 
would,  if  the  fork  were  held  in  the  hand  and  struck  or  bowed  with 
equal  force ;  for  in  the  former  case  it  has  more  work  to  do,  in 
setting  the  wood  and  air  in  vibration,  than  in  the  latter,  and  there- 

fore its  energy  is  sooner  exhausted. 

For  forks  having  the  vibration  numbers  in  the  first  column  of 
the  following  table,  boxes  having  the  internal  dimensions  given  in 
the  2nd,  3rd,  and  4th  columns  are  suitable.  The  dimensions  of  the 
first  four  are,  for  boxes  open  at  one  end  only;  those  of  the  last  four, 
for  boxes  open  at  both  ends.  The  fork  is  screwed  into  the  middle 
of  the  top  of  the  box.     The  dimensions  are  in  inches. 
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Vibration  No. Length. Width. Depth. 

128 
22'2 11-6 

61 256 
U-5 3-8 

2 
384 7-3 

3-2 
1-8 612 5-4 

2-7 
1-5 

640 8-8 
2-7 1-4 

768 7-8 
2-8 1-3 

896 6-2 2-1 11 
1024 5-5 

19 
1 

A  Resonator  is  a  vessel  of  varying  shape  and  material,  and  of 
such  dimensions,  that  the  air  contained  in  it  resounds,  when  a  note 
of  a  certain  definite  pitch  is  sounded  near  it.  Resonators  are  most 
commonly  constructed  of  glass,  tin,  brass,  wood,  or  cardboard. 
The  forms  most  often  met  with  are  the  cylindrical,  spherical,  and 
conical.  Their  use  is  to  enable  the  ear  to  distinguish  a  sound  of  a 
certain  pitch,  from  among  a  variety  of  simultaneous  sounds,  of 
different  pitches.  The  only  essential,  therefore,  in  the  construction 
of  a  resonator  is,  that  the  mass  of  air  which  it  encloses  shall  resound 
to  the  note  which  it  is  intended  to  detect.  The  best  form  for  a 
resonator  designed  for  accurate  scientific  work  is  the  spherical,  as 
it  then  reinforces  only  the  simple  sound  to  which  it  is  tuned.     The 

I 

Fio.  37. 

spherical  resonators  employed  by  Helmholtz  in  his  researches,  were 

of  glass,  and  had  two  openings  as  shown  in  fig.  37.  The  opening 

on  the  left  hand  serves  to  receive  the  sound  waves  coming  from  the 

vibrating  body,  the  other  opening  is  funnel  shaped  and  is  to  be  in- 
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eerted  in  the  ear.  Helmholtz  caused  this  nipple  to  fit  closely  into 
the  aural  passage,  by  surrounding  it  with  sealing  wax,  softening  the 
latter  by  heat,  and  then  gently  pressing  it  into  the  ear.  The 
resonator  when  thus  used,  has  practically  only  one  opening.  In 
using  these  instruments,  one  ear  should  be  closed,  and  the  nipple  of 
the  resonator  inserted  in  the  other.  On  listening  thus  to  simul- 

taneous sounds  of  various  pitches,  most  of  them  will  be  damped; 
but  whenever  a  sound  occurs  of  that  particular  pitch  to  which  the 
resonator  is  tuned,  it  will  be  wonderfully  reinforced  by  the  co- 
vibration  of  the  air  in  the  resonator.  In  this  way,  anyone,  even 
though  unpractised  in  music,  will  readily  be  able  to  pick  out  that 
particular  sound  from  a  number  of  others.  When,  from  the  faint- 
ness  of  the  sound  to  be  detected,  or  from  some  other  cause,  any 
diflQculty  in  hearing  it  is  experienced,  it  is  of  advantage  to 
alternately  apply  the  resonator  to,  and  withdraw  it  from  the  ear 

A  resonator,  which  is  capable  of  being  tuned  to  any  pitch  within 
the  compass  of  rather  more  than  an  octave,  has  been  used  for  some 
years  by  the  writer.  It  is  composed  of  three  tubes  of  brass,  sliding 
closely  within   one  another.     The  innermost,  fig.  38a,  which  is 

JL 

Fio.  38. 

about  four  inches  in  length,  and  an  inch  or  more  in  diameter,  is 
closed  at  one  end  by  a  cap  which  is  screwed  on  to  the  tube.  In  the 
centre  of  this  cap  is  an  aperture,  about  half  an  inch  in  diameter, 
which  is  closed  by  a  perforated  cork,  through  which  passes  a  short 
piece  of  glass  tube,  the  end  of  which  is  fitted  to  the  ear.  The 
resonator  is  thus  a  closed  one,  and  its  length  can  be  increased  by 
means  of  the  sliding  tubes,  b  and  c  (which  are  each  about  4  inches 
long),  from  about  4  inches  to  12  inches.  It  is  best  tuned  approxi- 

matel}',  by  first  calculating  the  length  of  stopped  tube  corresponding 
to  a  certain  note,  according  to  the  method  explained  in  the  present 
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chapter.  Starting  with  the  resonator  at  this  length,  by  gradually- 
increasing  or  diminishing  its  length,  while  that  note  is  being 
sounded  on  some  instrument,  a  point  of  maximum  resonance  will 
soon  be  obtained.  In  this  way,  the  length  of  the  resonator  for  all 
the  notes  within  its  range  can  be  ascertained.  The  names  of  these 

notes  may  be  conveniently  wiitten  on  a  slip  of  wood,  or  engraved 
on  a  strip  of  metal,  each  one  at  a  distance  from  the  end  equal  to 

the  length  of  the  resonator,  when  tuned  to  the  corresponding  note. 
Then,  in  order  to  adjust  the  resonator  to  any  note,  it  is  only 
necessary  to  place  the  slip  inside  it,  and  gradually  lengthen  or 
shorten  till  the  open  end  is  coincident  with  the  name  of  that  note, 

as  engraved  on  the  slip.  It  is  of  great  advantage  to  have  two  such 
resonators,  both  similarly  tuned,  and  simultaneously  apply  one  to 

•each  ear.     If  only  one  be  used,  the  other  ear  should  be  closed. 

For  sounds  high  in  pitch,  glass  tubes  cut  to  the  proper  lengths,  are 

very  convenient.  They  may  be  made  to  taper  at  one  end  for  inser- 
tion in  the  ear,  or  in  the  case  of  very  high  notes,  left  just  as  they 

are,  and  used  as  open  tubes,  being  held  at  a  small  distance  from 
the  aural  passage.  It  may  be  remarked  here,  that  the  tube  of  the 
ear  is  itself  a  resonator.  The  pitch  of  the  note  to  which  it  is  tuned, 
will  of  course  vary  in  different  person  s,  and  may  in  fact  be  different 

for  the  two  ears  of  the  same  person ;  it  generally  lies  between  G^  ;:= 
3,072  and  E^  =  2,560. 

Summary. 

Resonance  or  Co-vibration  is  the  name  given  to  the  phenomenon 

of  one  vibrating  body  imparting  its  vibratory  movement  to  another 
body,  previously  at  rest. 

To  obtain  the  maximum  resonance  two  conditions  are  essential : 

(1)  The  two  bodies  must  be  in  exact  unison;  that  is  to  say,  they 
must  be  capable  of  executing  precisely  the  same  number  of 
vibrations  in  the  same  time. 

(2)  A  certain  period  of  time  must  be  allowed  for  the  exciting 

body  to  impress  its  vibrations  on  the  other. 

The  phenomenon  of  resonance  may  be  illustrated  by  means  ot 

tuning-forks,  strings,  &c.,  but  partially  confined  masses  of  ai'-  are 
the  most  susceptible. 

A  Resonance  Box  is  usually  constructed  of  wood ;  it  may  be  open 

at  one  or  both  ends,  and  must  be  of  such  dimensions  that  the  en- 

closed mass  of  air  will  vibrate  in  unison  with  the  tuning-fork  to  be 

applied  to  it. 
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A  Resonator  is  an  open  vessel  of  glass,  metal,  cardboard,  or  othor 
material,  of  such  dimensions,  that  the  mass  of  air  contained  in  it 
resounds  to  a  note  of  a  certain  pitch.  Its  use  is,  to  assist  the 
ear  in  discriminating  a  sound  of  this  particular  pitch,  from  a 
number  of  others  at  different  pitches,  aU  sounding  simultaneously. 

In  order  that  a  column  of  air,  in  a  cylindrical  tube  open  at  both 
ends,  may  vibrate  in  unison  with  a  given  sound,  the  length  of  the 
tube  must  be  approximately  one  half  the  length  of  the  correspond- 

ing sound  wave. 

If  the  tube  be  closed  at  one  end,  its  length  must  be  one-fourth 
that  of  the  sound  wave. 

In  both  cases  the  diameter  of  the  tube  should  not  exceed  ono- 
fiixth  the  length. 
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CHAPTER    VIII 

Ox  THE  Quality  of  Musical  Sounds. 

Hitherto  we  have  treated  only  of  simple  sounds,  that  is  to  say,  each 

sound  has  been  considered  to  be  of  some  one,  and  only  one  particu- 
lar pitch.  This  is,  however,  far  from  being  the  case  with  the  great 

majority  of  musical  sounds  we  hear.  If  such  sounds  are  attentively 
examined,  almost  all  of  them  will  be  found  to  be  compound ;  that 
is,  each  individual  sound  will  be  found  to  really  consist  of  a 
number  of  simple  sounds  of  different  pitch.  Those  readers,  who 

are  not  already  practically  cognizant  of  this  fact,  are  strongly 
recommended  to  convince  themselves  of  it,  by  experiment,  before 
proceeding  further.  Some  persons,  both  musical  and  unmusical, 
find  great  difficulty  in  distinguishing  the  simple  elementary  sounds, 
that  form  part  of  a  compound  tone.  Those  who  experience  any 
such  difficulty,  will  find  it  useful  to  go  carefully  through  the 
following  experiments. 

Strike  a  note  on  the  lower  part  of  the  key-board  of  a  pianoforte, 
eay  C|,  in  the  Bass  Clef.  As  the  sound  begins  to  die  away,  the 

upper  octave  of  this  note  may,  with  a  little  attention,  be  readily  dis- 
tinguished. If  the  listener  experiences  any  difficulty  in  recognising 

it,  he  will  find  it  useful  to  lightly  touch  the  C  above  (that  is,  the 
sound  he  is  listening  for)  and  let  it  die  away  before  striking  the  Bass 
C|.  If  he  does  not  then  succeed,  a  resonator  tuned  to  the  expected 
sound,  or,  better  still,  two  such  resonators,  one  for  each  ear,  should 

be  used.  By  alteraately  applying  these  to,  and  withdrawing  them 
from,  the  ears,  even  the  most  untrained  observer  cannot  but  detect 
the  wished-for  sound.     Next,  strike  the  same  Bass  C|  as  before,  but 
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direct  the  attention  to  the  G  in  the  Treble  staff  an  octave  and  a 

fifth  above  it.  This  is  generally  more  easily  recognised  than  the 
preceding,  and  is  usually  equally  loud.  When  this  has  been  clearly 
heard,  strike  the  same  note  as  before,  and  listen  for  the  C  in  the 

Treble  staff,  two  octaves  above  it.  More  difficulty  will  perhaps  be 
experienced  in  detecting  this,  but  by  the  aid  of  properly  tuned 
resonators,  it  will  be  heard  sounding  with  considerable  intensity. 

The  next  two  sounds  are  better  perceived  as  the  tone  is  dying  away; 

they  are  the  E',  two  octaves  and  a  major  third  above  the  sound 
struck,  and  the  G'  two  octaves  and  a  fifth  above. 

The  student  should  vary  this  experiment  by  taking  other  notes, 
and  listening  to  their  constituent  elements.  These  latter  will 
always  be  found  occuning  in  the  above  order  :  thus  if  the  D  in  the 

Bass  clef  be  struck  the  following  sounds  may  be  heard : — 

S>
 

n' 
di 

s 

Ke
y 
 

D. 
   

   
 

d 

No  sound  intermediate  in  pitch  between  any  of  these  will  bo 
detected.  Further,  these  sounds  are  not  aural  illusions,  but  have 

a  real  objective  existence,  for  they  are  capable  of  exciting  corre- 
sponding sounds  in  other  strings,  by  resonance.  Thus,  having  softly 

pressed  down  any  key,  say  (d),  without  sounding  it,  so  as  to  raise 
the  damper  from  the  wires,  strike  sharply  the  octave  below  (d|)  and 
after  a  second  or  two,  raise  the  finger  from  this  latter,  so  as  to  damp 

its  wires;  the  note  (d)  will  be  plainly  heard,  the  corresponding 
wires  having  been  set  in  vibration  by  resonance.  This  experiment 
will  be  found  successful  with  all  the  constituent  parts  given  above. 

For  example,  press  down  the  F'jJ  (n')  on  the  top  line  of  the  Treble 
staff,  but  without  sounding  it,  and  strike  sharply  the  D|  (d|)  two 
octaves  and  a  major  third  below.  Eaise  the  finger  from  the  latter 
after  a  second  or  two,  and  the  wires  of  the  foimer  will  be  heard 

giving  forth  the  F'g  (n'). 

All  the  constituent  elements  of  a  compound  tone  given  above, 

are  very  prominent  on  an  American  Organ,  and  still  more  so  on  the 
Harmonium.      They  will  be  found  to  be  in  exactly  the  same  order. 



ON  THE  QUALITY  OF  MUSICAL   SOUNDS.         71 

no  sound  intermediate  between  those  given  will  occur.  With  the 
aid  of  resonators,  it  will  be  easy  to  detect  still  higher  constituents 

than  those  mentioned  above.  It  need  scarcely  be  said,  that,  in  the 

experiments  with  these  instruments,  onlj^  one  reed  should  be 
vibrating  at  a  time. 

The  constituent  elements  in  the  compound  tones  of  the  voice  are 

more  difficult  to  detect.  It  is  advisable  to  begin  with  a  good  bass 
voice.  All  the  constituents  given  above,  may  be  heard  after  a  little 
practice  with  the  resonators.  They  are  louder  in  some  vowel 

sounds,  as  will  be  seen  hereafter,  than  in  others  ;  the  "a"  sound 

as  in  "  father,"  and  the  "  i  "  as  in  "  pine,"  are  favourable  ones  to 
experiment  with.  After  a  little  practice,  the  ear  becomes  practised 
in  this  analysis  of  sounds,  and  the  resonators  may  be  dispensed 
with  to  a  great  extent. 

Before  proceeding  further,  it  will  be  best  to  explain  the  terms 
that  are  used  in  speaking  of  these  constituents  of  a  compound  tone. 

On  one  system  of  nomenclatura,  the  lowest  element  of  a  compound 

tone  is  termed  the  Fundamental ;  the  next  one  (an  octave  above), 
the  First  Overtone ;  the  next  (a  Fifth  above  that),  the  Second  Over- 

tone ;  the  next  (a  Fourth  above  that),  the  Third  Overtone  ;  and  so 
on.  The  constituent  elements  are  also  termed  Partials  ;  the  lowest 

being  termed  the  First  Partial ;  the  next,  the  Second  Partial ;  the 
next,  the  Third  Partial;  and  so  on.  Thus,  taking  (di)  as  the 
Fundamental  or  First  Partial,  the  others  will  be, 

5th  Overtone - 

s' 

6th  Partial 
4th - 

n' 

oth       „ 

3rd - 
d'       - -         4th       „ 

2nd _ s 3rd       ., 

Ist _ d 
2nd      „ 

Fundamental Tone      - 
d,       - 

1st       „ 

Each  of  these  partials  or  overtones  is  a  simple  tone,  that  is,  a  sound 
of  definite  pitch,  which  cannot  be  resolved  into  two  or  more  sounds 
of  different  pitch.  A  compound  tone  is  a  sound  consisting  of  two 
or  more  simple  tones. 

By  means  of  resonators,  many  higher  partials  than  the  six 
already  mentioned  can  be  detected.  The  following  list  contains  the 
first  twenty.  The  first  column  gives  the  order  of  the  partials  ;  the 
second  and  third,  their  names,  calling  the  fundamental  C3  and  da 
respectively ;  and  the  fourth  gives  the  ratios  of  their  vibrational 
Qumbers.  to  the  fundamental,  this  latter  being  taken  as  1. 
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Order. Name. Name. ViB. 
Ratio. 

XX 

E' 

n' 

20 

XIX 19 
xvin 

D" 

r' 

18 

XVII . . . 

17 

XVI C 

d' 

16 
XV B t 15 
XIV 14 
X.iii 

13 

XII 

G*
 

s 12 
XI 

11 

X E n 
10 

IX D r 9 
VIII C d 8 
vn 7 

VI 

Gh 

S| 

6 
V 

E, 

n. 

5 
IV 

C| 
d, 

4 
III 

a. 

82 

3 

II 

o; 

d, 

2 
I 

C3 d3 

1 

Those  un-named  do  not  coincide  exactly  with  any  tone  of  the  modern  musical  scale, 
vn  is  approximately  B!2|  or  tai. 

It  will  be  seen  on  inspecting  the  above  table,  that  the  partials 
occur  according  to  a  certain  fixed  law;  viz.,  the  vibrational  numbers 
of  the  partials,  commencing  at  the  fundamental,  are  proportional 
to  the  numbers  1,  2,  3,  4,  5,  6,  «S:c.  Thus,  theoretically,  the  above 
table  may  be  indefinitely  extended.  Practically,  the  first  twelve  or 
more  may  be  verified  with  a  haimonium  and  a  couple  of  resonators  ; 
those  above,  are  best  observed  on  a  long  thin  metallic  wire,  or  an 
instrument  of  the  trumpet  class,  in  which  the  higher  partials  are 
very  prominent. 

By  experiments,  similar  to  those  which  have  been  recommended 
in  the  case  of  the  piano,  it  is  easy  to  convince  oneself,  that  nearly 
all  the  tones  produced  by  strinffed  and  wind  instruments,  are  com- 
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pound,  and  that  the  partials  of  which  these  compound  tones  consist, 
belong  to  the  series  given  above  ;  that  is  to  say,  though  any  one  or 
more  of  these  partials  may  be  absent,  no  sound  of  any  other  pitch, 
than  those  given  above,  ever  makes  its  appearance. 

Instruments  which  produce  only  simple  tones  are  comparatively 

rare.  A  tuning-fork,  when  struck  on  a  hard  substance,  or  when 
carelessly  bowed,  gives  a  compound  tone,  consisting  of  a  funda- 

mental and  one  or  two  very  high  overtones.  When,  however,  it  is 
mounted  on  a  resonance  box  of  proper  dimensions  and  carefully 
bowed,  the  fundamental  tone  is  so  strengthened  by  resonance,  that 
the  resulting  sound  is  practically  free  from  overtones.  The  tones  of 
flutes  and  of  wide  stopped  organ  pipes  gently  blown,  and  the 
highest  notes  of  the  piano,  are  nearly  simple. 

The  relative  intensities  of  the  partials  forming  a  compound  tone 

vary  very  greatly  in  different  instruments,  and  even  in  different 
parts  of  the  same  instrument ;  thus,  on  the  lower  part  of  a  piano, 
the  third  partial  is  generally  louder  than  the  fundamental,  while  on 
the  upper  part,  it  is  very  much  softer.  In  some  voices,  again,  and 
with  some  vowel  sounds,  the  third  partial  is  painfully  prominent, 
while  in  other  voices  and  with  other  vowel  sounds,  it  is  only 
detected  with  difficulty.  As  a  general  rule,  the  farther  the  partial 
is  from  the  fundamental,  the  less  is  its  intensity.  Taking  the  sound 

from  a  well-bowed  violin  as  a  model  of  tone,  Helmholtz  has  given 
the  following  approximation  to  the  relative  intensities  of  its  partials, 
the  intensity  of  the  fundamental  being  taken  as  1. 

Partial.                        Intensity 

VI 
1 
86 

V 1 

36 IV I Itf 

111 .      .      .      .      i 
n 

■      -      -      -     i 

I     . 1 

Considering  the  loudness  of  the  partials  in  many  instruments,  it 
may  be  a  matter  of  surprise  to  some,  that  they  are  not  more 
easily  recognised.  It  should  be  remembered;  However,  that,  as  the 

partials  of  a  compound  tone  all  begin  together,  and  usually  continue 
with  unvarying  relative  intensities  till  the  tone  ends,  when  they  all 
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terminate  together,  the  ear  has  always  been  accustomed  to  consider 
it  as  a  whole.  Musical  people  especially,  having  been  in  the  habit  of 
directing  all  their  attention  to  a  tone  as  a  whole,  are  often  incapable 

of  recognising  the  constituent  parts,  until  their  attention  is  directly 
called  to  them  ;  just  as  a  person,  after  haying  had  a  clock  ticking  in 

his  room  for  some  time,  ceases  to  notice  the  ticking  unless  some- 
thing attracts  his  attention  especially  to  it.  Again,  when  one  is 

thinking  deeply,  a  remark  made  by  another  person  is  often  not 
perceived  :  the  nerves  of  hearing  are  doubtless  excited,  but  the 
attention  not  being  aroused,  the  sound  is  not  perceived.  When 
anyone  has  once  become  accustomed  to  listen  for  overtones,  there 
is  no  difficulty  whatever  in  hearing  them  ;  in  fact,  they  sometimes 
force  themselves  upon  the  ear  of  the  practised  listener  when  not 
wanted. 

Most  of  the  foregoing  facts  concerning  partials  have  been 
known  for  centuries,  but  the  phenomenon  was  regarded  as  little 
more  than  a  curiosity,  until  Helmholtz  proved  that  the  quality  of 
a  musical  tone  depended  upon  the  occurrence  of  partials.  Before 

going  into  this  matter,  it  will  be  necessary  to  show  more  exactly 
what  is  meant  here  by  quality. 

Many  musical  tones  aie  accompanied  by  more  or  less  noise  ;  thus, 
the  tone  of  an  organ-pipe  is  adulterated,  as  it  were,  more  or  less,  by 
the  noise  of  the  wind  striking  the  sharp  edge  of  its  embouchere ; 
the  tone  from  a  violin  is  mingled,  more  or  less,  according  to  the 

skill  of  the  player,  with  the  scraping  noise  of  the  bow  against  the 

strings  ;  the  tone  from  the  human  voice  is  accompanied,  more  or 
less,  with  the  noise  of  the  breath  escaping.  Again,  the  sounds  of 
some  instruments  differ  from  those  of  others,  in  that  their  intensities 

vary  in  different  but  regular  ways.  Thus  in  the  piano  and  harp, 
the  tones,  after  the  wires  are  struck,  immediately  decrease  regularly 

in  intensity,  till  they  die  away  ;  while  on  the  organ  they  continue 
with  unvarying  intensity,  as  long  as  they  sound  at  all.  All  such 

peculiarities  as  the  above  are  not  included  under  the  term  quality, 
as  we  use  it  here.  The  following  may  be  taken  as  a  fonnal 
definition  of  the  term  quality,  as  employed  below.  If  two  tones 

perfectly  free  from  noises,  of  precisely  the  same  pitch,  and  of  equal 
intensities,  differ  in  any  way  from  one  another,  then  all  those 

respects  in  which  they  differ  are  comprised  under  the  term  quality. 
Using  the  term  quality  in  this  sense,  Helmholtz  has  shown  that : 
The  Quality  of  a  compound  tone  depends  upon:  the  nitmber,  order,  and 
relative  intensities  of  its  constituent  partials. 
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Before  stating  the  various  methods  by  which  this  proposition  has 
been  proved,  it  may  be  advisable  to  explain  its  meaning  a  little 
more  fully.  In  the  first  place,  the  proposition  asserts,  that  the 
quality  of  a  tone  varies  with  the  number  of  its  component  partials ; 

thus  if  one  tone  consists  of  thi-ee  partials,  another  of  four,  and 
another  of  six ;  then,  each  of  these  three  tones  will  have  a  different 

quality  from  the  other  two.  In  the  second  place,  the  proposition 

declares  that  the  quality  of  a  tone  varies  with  the  order  of  its  con- 
stituent partials ;  for  example,  suppose  we  have  three  tones,  the 

first  consisting,  say,  of  the  1st,  2nd,  and  3rd  partials,  the  second  of 
the  1st,  3rd,  and  5th,  and  the  third  of  the  1st,  3rd,  and  6th,  then 

each  of  these  three  tones  will  have  a  different  quality  from  the 
other  two.  In  the  above  cases,  we  have  supposed  the  partials  to  be 
of  the  same  relative  intensities  in  each  case.  If,  however,  the 

relative  intensities  vary,  the  proposition  affirms  that  the  quality 
will  vary  also.  Thus  to  take  a  simple  case,  suppose  we  have  two 
tones  each  consisting  of  the  1st  and  2nd  partials,  and  that  the  two 
fundamentals  are  of  the  same  intensity  ;  then  if  the  second  partial 
of  the  one  differs  in  intensity  from  the  second  partial  of  the  other, 

the  proposition  asserts,  that  the  quality  of  the  one  tone  will  differ 
from  that  of  the  other. 

On  reading  the  above  propositions  the  following  question  at  once 
suggests  itself.  Is  the  alleged  cause,  viz.,  the  variation  in  the 
number,  order,  and  relative  intensities  of  the  partials,  sufficient  to 
account  for  the  observed  effect,  viz.,  tne  variation  in  quality  ?  The 
variations  in  quality  of  tone  are  infinite ;  therefore,  if  the  proposition 
be  true,  the  variations  in  the  number,  order,  and  relative  intensities 
must  be  infinite  also.  Now  the  number  of  variations  in  number 

and  order  of  partials  although  very  great  are  practically  limited ; 
but  it  is  obvious  that  the  relative  intensities  of  the  partials  may 

vary  in  an  infinite  number  of  ways,  and  thus  the  above  question 
must  be  answered  in  the  affirmative.  In  the  next  place,  it  is  easy 

to  see  that  if  the  proposition  be  true,  simple  tones  can  have  no 
particular  quality  at  all,  they  must  all  resemble  one  another  in  this 
respect,  from  whatever  source  they  come.  On  trial  this  will  be 

found  to  be  the  case.  "We  have  already  observed  that  these  tones 
can  be  approximately  obtained  from  tuning-forks  mounted  on 
appropriate  resonance  boxes,  wide-stopped  organ  pipes  and  flutes 
gently  blown,  and  the  highest  notes  of  the  j-ianoforte.  The  tones 
from  these  four  sources  cannot  be  compared  together  very  well,  for 
the  reasMi  alrcadv  referred  to  :  the  first  montioned  being  almost 
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pure,  tlie  second  and  third  being  accompanied  by  characteiistic 
noises,  and  the  fourth  having  its  peculiar  variation  of  intensity;  but 
they  all  agree  in  being  gentle  and  somewhat  dull.  Moreover,  they 
can  be  strictly  compared  in  their  own  class  ;  thus,  for  example,  the 

tones  from  tuning-forks  are  all  alike  in  quality;  in  selecting  a 
tuning-fork,  no  one  ever  thinks  of  the  quality  of  its  tone. 

There  are  two  methods,  by  which  the  important  proposition  now 

under  consideration  may  be  proved, — the  analytical,  and  the 
synthetical.  The  process  in  the  former  case  is  to  take  two  sounds, 
which  differ  in  quality,  and  by  analysing  them  into  their  constituent 
partials  (with  or  without  the  aid  of  resonators),  show  that  these 
latter  differ  in  the  two  cases,  either  in  number,  order,  or  in  their 

relative  intensities.  Thus,  if  the  student  analyses  a  tone  of  rich 

and  full  quality,  he  will  find  the  first  six  partials  tolerably  well 
developed,  while  on  the  other  hand,  in  a  tone  of  poor  or  thin 

quality,  he  will  find  most  of  them  absent,  or  of  much  less  intensity. 
Again,  the  metallic  or  brassy  quality  (as  it  is  termed)  of  instruments 
of  the  trumpet  class,  he  will  find  to  be  due  to  the  clashing  of  very 
high  partials,  which  are  very  prominent  in  such  instruments,  and 

which,  as  will  be  seen  by  referring  to  the  table  on  page  72,  lie  vei^ 
close  together.  As  another  illustration,  the  peculiar  quality  of  the 
tones  of  the  clarionet,  may  be  accounted  for,  by  the  fact,  that  only 
the  odd  partials,  the  1st,  3rd,  oth,  &c.,  will  be  found  to  be  present 
in  the  tones  of  this  instrument.  The  student  will  find,  in  the 

analysis  of  the  vowel  sounds,  a  very  instructive  series  of  experi- 
ments. The  differences  in  these  sounds,  must  be  simply  differences 

in  quality,  according  to  our  definition  ;  and  thus  if  the  proposition 
under  discussion  be  true,  wo  ought  to  find  corresponding  differences 
in  the  number,  order,  or  relative  intensities  of  the  partials  present 
in  the  vowel  sounds.  On  trial,  this  will  be  found  to  be  the  case. 

If,  for  example,  the  **  a"  as  in  "  father  "  be  sounded  by  a  good 
voice,  all  the  first  six  partials  may  be  easily  heard;  but  if  the  same 

voice  gives  the  '*  oo  "  sound,  scarcely  anything  but  the  fundamental 
will  be  detected. 

The  general  process,  in  the  synthetical  method  of  proof,  is,  to 

take  simple  tones  of  the  relative  pitch  of  the  series  of  pai-tials,  and, 
by  combining  these  together  in  different  numbers  and  orders,  and 
with  different  intensities  produce  different  qualities  of  tone.  The  first 
difficulty  here,  is  to  procure  perfectly  simple  tones.  These  are  best 

obtained  from  tuning-forks  fitted  with  suitable  resonating  boxes.  An 
elementary  expenment  can  be  conducted  as  follows.     Select  two 
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tuning-forks,  dift'ering  in  pitch  by  an  exact  octavo,  and  mount 
them  on  resonating  boxes  of  the  proper  dimensions ;  set  the  lower 
one  vibrating,  by  bowing  it  with  a  violin  or  double  bass  bow,  and 
note  the  dull  yet  gentle  effect  of  the  simple  tone  produced.  Now 

bow  both  the  forks  rapidly  one  after  the  other ;  the  two  simple 
tones  will  soon  coalesce,  and  will  sound  to  the  ear  as  one  tone,  of 

the  pitch  of  the  lower  one,  but  of  much  brighter  quality  than 
before.  The  effect  of  the  higher  fork,  that  is,  of  the  second  partial, 

will  be  strikingly  seen,  by  damping  it  after  both  have  been  vibrating 
a  second  or  two ;  the  return  to  the  original  dull  simple  tone  is  very 
marked.  This  experiment  may  be  varied  very  greatly,  by  the  aid 
of  four  or  five  forks  tuned  to  the  first  four  or  five  partials.  The 

following  eight  forks  form  a  very  sei-viceable  series  for  these 
experiments. 

C-      =       1024. 

B^i  nearly    896. 

O' 

= 768. 

El 

= 640. 
C — 512. 

G = 384. 
C — 256. 

c, 

= 128. 

Of  course,  the  effect  produced  by  these  forks  is  only  an  approxi- 
mation to  the  effect  produced  by  the  real  partials,  for,  in  the  first 

place,  the  forks  cannot  very  easily  be  all  excited  at  the  same  instant ; 
and  again,  their  intensities  can  only  be  regulated  in  a  very  rough 
way.  In  an  arrangement  deyised  by  Helmholtz  for  investigating 
the  vowel  sounds,  these  two  difficulties  were  removed  by  the  use  ot 

electro-magnets  for  exciting  the  forks,  and  by  employing  resonators 
at  different  distances,  and  with  moveable  openings,  to  regulate  their 
intensities. 

The  way  in  which  a  tuning-fork  is  excited  by  an  electro-magnet 
will  be  understood  by  a  reference  to  fig.  39.  Let  A  and  B  be  the 

poles  of  an  electro-magnet,  and  C  and  D  the  ends  of  the  prongs  of 

a  tuning-fork  between  them.  If  now  a  current  be  sent  through 

the  electro-magnet,  the  poles  A  and  B  will  attract  C  and  D.  Now 
if  the  current  be  stopped,  A  and  B  will  cease  to  attract  the  prongs, 
which  will  therefore  move  towards  one  another  again  in  consequence 

of  their  elasticity.  Let  the  current  again  pass,  and  C  and  D  will 
again  be  attracted.  If  we  can  thus  alternately  pass  and  stop  the 

current,  every  time  the  prongs  move  forward  and  backward,  the 
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H Q 
fork  will  continue  to  vibrate.  Thus,  if  the 
current  be  intermittent,  and  the  number  of 
interruptions  per  second  be  the  same  as 
the  vibration  number  of  the  fork,  the  vibra- 

tion of  the  latter  will  be  continuous.  If 

the  electro-magnet  be  powerful  enough, 
the  fork  will  also  continue  in  motion, 
though  the  number  of  interruptions  per 
second  be  ̂ ,  ̂ .  ̂ ,  &c.,  of  the  vibration 
number  of  the  fork. 

Tliese  interruptions  of  the  current  can 
be  brought  about  by  another  fork,  the 
vibration  number  of  which  is  either  the 

same,  or  |,  ̂,  ̂,  &c.,  of  the  first  one.  Let  C 
(fig.  40)  represent  this  second  fork,  and 

A,  B  the  poles  of  an  electro-magnet.  To  the  upper  prong  a  small 
wire    is   fastened  which    just  dips    into   a   little    mercury    con 

V 
Kio.  39. 

Fig.  40 

tained  in  a  cup  D,  when  the  fork  is  at  rest.  In  this  position  the 
current  from  one  end  of  the  battery  passes  to  the  cup  D,  thence 
through  the  fork  and  the  wire  E  to  the  electro-magnet  A  B,  and 
then  by  wire  F  back  to  battery.  But  directly  the  current  passes, 
the  poles  A  and  B  attract  the  prongs,  and  thus  the  wire  attached 
to  the  upper  one  is  lifted  out  of  the  mercury  in  the  cup  D.  The 
current  is  thus  broken,  A  and  B  cease  to  attract,  and  the  prongs 
return.  But  in  so  doing  the  wire  again  comes  into  contact  with  the 
mercurj^  the  current  is  again  set  up,  and  A  and  B  again  attract 
the  prongs.  This  alternate  making  and  breaking  of  the  circuit 
will  thus  be  kept  up,  and  the  motion  of  the  fork  is  rendered 
continuous. 

If  now  the  current  from  B  (fig.  40)  instead  of  passing  directly 
back  to  the  battery,  be  first  led  through  the  electro-magnet  of  the 
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fork  in  fig.  39,  it  will  be  seen  from  wliat  has  been  said  above,  that 
this  fork  also  will  be  set  in  vibration.  Further,  the  current  before 

returning  to  the  battery  may  be  led  through  several  such  electro- 
magnets, furnished  with  tuning-forks  ;  and  if  the  latter  have  vibra- 

tion numbers  which  are  the  same,  or  any  multiples  of  that  of  the  fork 
in  fig.  40,  they  will  be  kept  in  vibration  also.  Now,  the  vibration 
numbers  of  overtones  are  multiples  of  the  vibration  number  of  the 
fundamental,  and  therefore  only  one  such  fork  as  that  of  fig.  40  is 
necessary,  in  exciting  any  number  of  forks  such  as  that  of  fig.  39, 
if  the  latter  are  tuned  to  the  series  of  partials  and  the  former  is  in 
unison  with  the  fundamental. 

Pig.  41  shows  the  method  by  which  Helmholtz  obtained  variations 
in  intensity  in  his  apparatus.      D  represents  one  of  the  timing- 

Fig.  41. 

forks,  kept  in  vibration  by  an  electro-magnet,  which  is  not  shown 
in  the  figure.  A  is  a  resonator  of  suitable  dimensions,  the  apertuie 
of  which  can  be  closed  by  the  cap,  0.  When  thus  closed  the 
sound  of  the  fork  is  almost  inaudible,  but,  on  gradually  opening 
the  aperture,  the  sound  comes  out  with  increasing  loudness;  the 
maximum  being  reached  when  the  aperture  is  quite  uncovered. 
In  the  figure,  the  resonator  is  shown,  for  the  sake  of  distinctness, 
at  a  distaLce  from  the  fork  ;  when  in  use  it  may  be  pushed  up  as 
close  to  the  fork  as  desired,  by  means  of  the  stand  working  in  the 
groove  below.  The  cap  covering  the  aperture  of  the  resonator  is 
connected,  by  means  of  levers  and  wires  as  seen  in  the  figure,  with 
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one  of  the  ten  keys  of  a  key-board,  the  other  nine  of  which  are  in 
communication  with  nine  other  similar  resonators  each  tuned  to  its 
own  fork.  These  ten  forks  are  of  pitches  corresponding  to  the  ten 
partials  of  a  compound  tone. 

Having  thus  the  power  of  varying  the  number,  order,  and 
relative  intensities  of  these  ten  simple  tones,  compound  tones  of 
any  quality  can  be,  as  it  were,  built  up. 

In  Chapter  II  we  found  that  there  are  three  elements  that  deter- 
mine a  sound  wave,  viz.,  its  length,  amplitude,  and  form.  We 

have  since  found,  that  it  is  upon  the  length  of  a  sound  wave  that 
the  pitch  of  the  resulting  sound  depends,  and  upon  the  amplitude 
that  its  intensity  depends.  The  form  of  the  wave  being  the  only 
property  remaining,  it  follows  that  it  is  upon  this  element  that  the 
quality  of  the  sound  depends.  We  have  now  to  study  the  connectioi» 
between  these  two. 

Fio.  42. 

The  simplest  vibrational  form  is  that  made  by  a  common  pen- 
dulum, and  is  termed  a  pendular  vibration.     Suppose  the  bob  of 
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such  a  pendulum  to  be  at  the  highest  point  of  its  swing  to  the  left ; 
as  it  swings  to  the  right,  its  rate  of  motion  becomes  more  and 
more  rapid  till  it  reaches  its  lowest  position;  during  the  latter 
half  of  its  swing  it  gets  slower  and  slower,  till  it  reaches  its 
extreme  position  on  the  right,  when  after  a  momentary  rest,  it 
begins  its  journey  back.  The  first  half  of  the  journey  is  the 
exact  counterpart  of  the  second,  the  motion  being  accelerated  in 
the  first  half  at  exactly  the  same  rate  that  it  is  retarded  in 
the  second.  It  is  easy  to  construct  a  pendulum,  that  shall 
write  a  record  of  its  own  motion,  and  thus  to  obtain  a  pictorial 
representation  of  pendular  vibration.  Fig.  42  shows  a  form  of  the 
instrument,  which  the  student  will  have  no  difficulty  in  making  for 
himself.  The  funnel  below  which  rests  in  a  ring  of  lead,  is  filled 
with  sand.  As  it  swings  backwards  and  forwards,  the  sand  escapes, 
leaving  a  straight  ridge  of  sand  on  the  board  below,  as  seen  at  {ab}. 
If,  however,  the  board  be  at  the  same  time  uniformly  moved  along 

from  A  to  A',  the  sand  will  be  deposited  along  the  wavy  track  seen 
in  the  figure.  Such  a  tracing  of  a  pendular  vibration  is  seen  on  a 
larger  scale  in  fig.  43.     On  comparing  this  tracing  with  that  made 

Fig.  43. 

by  a  tuning-fork  as  described  in  Chapter  IV  it  is  found  that  they 
are  of  the  same  character  :  that  is,  a  tuning-fork  executes  pendular 
vibrations.  But  a  tuning-fork,  as  we  have  seen,  gives  simple  tones. 
It  seems,  therefore,  that  simple  tones  are  produced  by  pendular 
vibrations.  Further  experiment  and  observation  confirm  this,  and 
we  may  take  it  as  proved,  that  simple  tones  are  always  the  result 
of  pendular  vibrations. 
Now  a  compound  tone  is  made  up  of  partials :  and  partials  are 

simple  tones.  Further,  simple  tones  are  due  to  pendular  vibrations. 
It  follows,  therefore,  that  compound  tones  are  due  to  combinations 
of  pendular  vibrations. 
How  are  these  pendular  vibrations  simultaneously  conveyed 

through  the  air  ?  Throw  a  stone  into  a  piece  of  still  water,  and 
while  the  waves  to  which  it  gives  rise  are  travelling  outwards, 
thro;^  another  stone  into  the  water.     One  series  of  waves  will  be 
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seen  to  pass  undisturbed  through  the  other  series.  Let  the  tracing 
AaBeC,  fig.  44  represent  a  wave  of  the  first  series,  and  AdBbO 
one  of  the  second  series,  and  let  the  dotted  straight  line,  AgBhC, 

Fig.  44. 

represent  the  surface  of  still  water.  In  the  first  place  consider  the 
motion  of  a  particle  of  water  at  y.  The  first  wave  would  cause  the 
drop  to  rise  to  a,  and  the  second  if  acting  alone  would  raise  it  to  d. 
According  to  the  fundamental  laws  of  mechanics,  each  force  will 
have  its  due  effect  and  the  drop  will  rise  to  the  height  k  such  that 
^9  +  ̂9  ̂   9^'  Again,  the  drop  at  h,  if  under  the  influence  of  the 
first  wave  alone,  would  rise  to  e,  but  the  second  wave  would  depress 
it  to  b.  Under  these  two  antagoiiistic  forces  it  falls  to  I,  such  that 

hi  =  lib  —  he.  By  ascertaining  in  this  way,  the  motion  of  each 
point  along  the  wave,  we  can,  by  joining  all  these  points,  determine 
the  form  of  the  compound  wave  made  up  of  these  two  elementary 
ones. 

The  same  mechanical  laws  apply  to  sound  waves  as  to  water 
waves.  Thus  if  the  two  tracings  A  and  B,  in  fig.  45,  be  the  asso- 

ciated wave  forms  of  two  simple  tones  at  the  interval  of  an  octave, 
then  C,  constructed  from  these,  in  the  way  just  explained,  will  be 
the  associated  wave  form  produced  by  their  union  ;  that  is,  C  is  the 
associated  wave  form  of  a  compound  tone  consisting  of  the  first 

two  partials.  "We  have  here  supposed  that  A  and  B  commence 
together,  that  is,  in  the  same  phase.  If  we  suppose  the  curve  B  to 
be  moved  to  the  right  until  the  point  (1)  falls  under  the  point  (2), 
and  then  compound  these  waves,  we  obtain  a  different  resultant 
wave  form,  D.  If  B  were  displaced  a  little  more  to  the  right, 
another  wave  form  would  result.  Helmholtz  has  shown  experi- 

mentally that,  when  two  sound  waves  are  compounded  in  different 
phases,  although  waves  of  different  forms  are  obtained,  yet  no 
difference  can  be  detected  in  the  resulting  sounds;  that  is,  the 
sounds  corresponding  to  the  forms  C  and  D  would  be  exactly  alike. 
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Fig.  45. 

This  fact  seems  to  show,  that  the  ear  has  not  the  faculty  of  perceiving 
compound  tones  as  such,  but  that  it  analyses  them  into  their  con- 

stituent partials.  If  this  be  the  case,  it  follows  that  all  compound 
sounds  are  formed  by  the  union  of  two  or  more  simple  tones.  Now 
it  has  been  proved  by  Fourier,  that  there  is  no  form  of  compound 
wave  which  cannot  be  compounded  out  of  a  number  of  simple 
waves,  whose  lengths  are  inversely  as  the  numbers  1,  2,  3,  4,  5,  &c. 
Musically,  this  proposition  means,  that  eveiy  compound  musical 
sound  may  be  resolved  into  a  certain  number  of  simple  tones, 
whose  relative  pitch  follows  the  law  of  the  partial  tone  series. 

According  to  the  theoiy  of  Helmholtz,  briefly  referred  to  in 
Chapter  III,  this  analysis  is  effected  by  the  ear  as  follows: — 
' '  When  a  compound  musical  tone  is  presented  to  the  ear,  all  those 
elastic  bodies  (that  is,  the  radial  fibres  of  the  basilar  membrane, 
and  the  corresponding  arches  of  Corti)  will  be  excited,  which  have 
a  proper  pitch  corresponding  to  the  various  individual  simple  tones 
contained  in  the  whole  mass  of  tone,  and  hence  by  properly  direct- 

ing attention,  all  the  individual  sensations  of  the  individual  simple 

tones,  can  be  perceived." 

Summary. 

A  Simple  Tone  is  one  that  cannot  be  analysed  into  two  or  more 
Bounds  of  different  pitch. 
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A  Compound  Tune  or  Clang  is  a  tone  wliicli  is  made  up  of  two  oi 
more  Simple  Tones  of  different  pitch. 

Almost  all  the  sounds  employed  in  modem  music  are  compound. 

The  Simple  Tones  that  form  part  of  a  Compound  Tone  are  termed 
Partiah  or  Partial  Tones.  The  lowest  Partial  of  a  Compound  Tone 
is  termed  the  First  Partial ;  the  next  above,  the  Second;  the  next, 
the  Third  ;  and  so  on. 

The  First  Partial  of  a  Compound  Tone  is  also  called  the 
Fundamental  Tone,  and  the  others,  Overtones;  thus  the  Second 
Partial  is  termed  the  First  Overtone  ;  the  Third  Partial,  the 
Second  Overtone  ;  and  so  on. 

In  almost  all  the  Compound  Tones  used  in  modern  music,  the 

vibration  numbers  of  the  Partial  Tones,  starting  with  the  Funda  ■ 
mental,  are  in  the  ratios  of 

1  :  2  :  3  :  4  :  5  :  6  :  7  :  &c. 

Any  one  or  more  of  these  partials,  however,  may  be  absent  in 
any  particular  tone.  Thus,  for  example,  the  even  numbered 

partials  are  absent  in  the  tones  of  cylindrical  stopped  pipes. 

The  Relative  Intensities  of  the  partials  of  Compound  Tones  vary 
almost  infinitely.  As  a  general,  but  by  no  means  universal  rule, 

the  higher  the  order  of  the  partial,  the  less  is  its  intensity  ;  that  is 
to  say,  the  first  partial  is  generally  louder  than  the  second ;  the 
second  louder  than  the  third,  and  so  on. 

Approximately  Simple  Tones  may  be  obtained  from  carefully 

bowed  tuning-forks  mounted  on  suitable  resonance  boxes ;  or  from 
flutes  and  wide  stopped  organ  pipes,  gently  blown. 

If  two  pure  Musical  Tones  are  of  the  same  pitch  and  of  equal 
intensities,  all  those  respects  in  which  they  yet  differ,  are  included 
under  the  term  Quality  or  Timbre. 

The  Quality  of  a  Compound  Musical  Tone  depends  upon  the 
Number,  Order,  and  Relative  Intensities  of  its  constituent  partials. 

Helmholtz  has  demonstrated  this  proposition  by  the  Analysis 
and  Synthesis  of  Compound  Tones. 

Just  as  pitch  depends  on  wave  length,  and  intensity  on  amplitude ; 
so  the  quality  of  a  tone  (that  is,  the  number,  order,  and  relative 

intensity  of  its  partials)  depends  on  ivave  form. 

A  Simple  Tone  is  the  result  of  pendular  sound  waves  or  pendular 
vibrations,  that  is,  of  vibrations  similar  to  those  of  a  simple 

pendulum. 
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A  Compound  Tone  is  due  to  the  combination  of  two  or  more 
pendular  vibrations,  or  waves. 

Every  Compound  Tone  may  be  resolved  into  a  certain  number 
of  Simple  Tones,  whose  relative  pitch  follows  the  law  of  the  partial 
series. 

Similarly,  every  compound  wave  may  be  resolved  into  a  certain 
number  of  simple  pendular  waves,  whose  lengths  are  in  the 
ratios  of 

,1111. 

The  form  of  the  sound  wave,  therefore,  determines  the  number, 
order,  and  relative  intensities  of  the  partials,  that  is,  the  quality  of 
the  resultant  sound.  On  the  other  hand,  given  the  quality,  it  vi 
not  possible  to  determine  the  corresponding  wave  form,  since  for 
any  one  such  quality,  there  is  an  infinity  of  wave  forms,  due  to  the 
infinite  number  of  relative  positions  or  phases  in  which  the  con- 

stituent pendular  waves  may  start. 

The  ear  does  not  perceive  a  Compound  Tone  as  such,  but  analyses 
it  into  its  constituent  pendular  waves,  each  of  these  latter  producing 
the  sensation  of  a  Simple  Tone  at  its  own  particular  pitch  and 
intensity. 
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CHAPTER    IX. 

On  the  Vibrations  of  Stkings. 

A  stringed  instrument  consists  essentially  of  three  parts,  viz  :— 
the  string,  catgut,  or  wire,  to  be  set  in  vibration ;  some  means  oi 
setting  up  this  vibration ;  and  a  sound-board,  or  other  resonant 
body,  by  means  of  which  the  vibratory  movement  is  to  be  trans- 

mitted to  the  air. 

The  means  by  which  strings  are  set  in  vibration  vary  in  different 
instruments.  They  may  be  struck  by  a  hammer,  as  in  the  piano- 

forte ;  bowed,  as  in  instruments  of  the  violin  class;  set  in  motion 
by  a  current  of  air,  as  in  the  case  of  the  -Slolian  harp  ;  or  plucked, 

like  the  hai-p  and  zither.  In  this  last  case,  the  plucking  may  be 
done  with  the  finger  tips,  as  in  the  case  of  the  harp  and  guitar,  or 
by  means  of  a  quill  or  plectrum,  as  in  the  zither  and  harpsichord. 
In  the  case  of  bowed  instruments,  the  particles  of  resin  with  which 
the  bow  is  rubbed,  catch  hold  of  the  portion  of  the  string  with  which 
they  are  in  contact,  and  pull  it  aside;  its  own  elasticity  soon  sends  it 
back,  but  being  immediately  caught  up  again  by  the  bow,  the 
vibrations  are  rendered  continuous. 

The  vibrating  string,  presenting  so  small  a  surface,  is  capable  of 
transmitting  very  little  of  its  motion  directly  to  the  air.  It  is 
necessary  that  its  vibrations  should  first  be  communicated  to  some 
body,  which  presents  a  much  larger  surface  to  the  air.  Thus,  in  the 
pianoforte,  the  vibrations  of  the  wires  are  first  transmitted,  by 
means  of  the  bridge  and  wrest-pins,  to  a  sound-board ;  in  the  harp, 
the  motion  of  the  strings  is  communicated  to  the  massive  frame- 

work. In  the  violin,  the  vibratory  movement  of  the  strings  is 

communicated  by  means  of  the  bridge  to  the  "  belly."  The  bridge 
stands  on  two  feet,  immediately  beneath  one  of  which  is  the  "sound 
post,"  which  transmits  the  motion  to  the  "back  "  of  the  instrument, 
the  whole  mass  of  air  between  the  "  back"  and  the  "belly"  thus 
l)eing  set  in  vibration. 
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The  following  simple  experimeut  will  illustrate  the  important 
part  played  by  the  sound-board  or  its  substitute,  in  stringed 
instruments.  Fasten  one  end  of  a  string,  3  or  4  feet  in  length,  to 
a  heavy  weight,  and,  holding  the  other  end  in  one  hand,  let  the 
weight  hang  freely.  On  plucking  or  bowing  the  string,  scarcely  any 
sound  will  be  heard.  Now  attach  the  free  end  of  the  string  to  the 
peg  at  the  left  hand  of  the  Sonometer  (fig.  23),  and  let  the  weight 
hang  freely  over  the  pulley  at  the  right  hand.  If  the  string  be 
now  plucked  or  bowed,  a  loud  sound  will  be  emitted. 

"We  now  proceed  to  study  the  conditions  which  determine  pitch, 
quality,  and  intensity,  in  stringed  instruments.  As  the  tones  pro- 

duced by  such  instruments  are  rarely  or  never  simple,  it  will  be 
understood,  that  in  investigating  the  laws  relating  to  pitchy  it  is  the 

'pitch  of  the  fundamental  tone  alone,  that  is  considered. 
If  T  denote  the  tension  of  a  stretched  string,  and  M  its  mass,  it 

may  be  shown  mathematically,  that  the  velocity  F,  with  which  a 
transverse  vibration  will  travel  along  it,  will  be — 

y  =  y^ 

^    M 

and  if  L  denote  the  length  of  the  string,  it  is  evident  that  -—  is  the 
time  required  for  it  to  execute  one  complete  vibration.  Therefore 
if  N  denotes  the  number  of  vibrations  the  string  performs  in  one 
second 

N^    1    ̂ y^^    X     V 

Substituting  the  above  value  of  V,  we  get 

From  this  formula  we  may  deduce  the  following  laws : — 
(1).  The  tension  of  the  string  remaining  the  same,  N  (the 

vibration  number)  varies  inversely  as  the  length  of  the  string. 
(2).  Other  things  remaining  the  same,  JV  varies  inversely  as  the 

diameter  of  the  string. 
(3).  Other  things  remaining  constant,  N  varies  directly  as  the 

square  root  of  the  tension — ^that  is,  of  the  stretching  force  or 
weight. 

(4).  Other  things  remaining  constant,  N  varies  inversely  as  the 
square  root  of  the  density  or  weight  of  the  string. 

These  statements  can  also  be  verified  experimentally,  without 
recourse  to  mathematics,  by  means  of  the  Sonometer  described  in 
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Chapter  IV.  Thus,  to  prove  the  first  law,  stretch  the  wire  by 
attaching  any  suflBcient  weight,  as  shown  in  fig.  23,  and  observe 
the  pitch  of  the  tone  it  then  gives.  Now  place  the  movable  bridge 
in  the  centre,  pluck  the  half  string  and  again  note  its  pitch.  Do 

the  same  with  ̂ ,  ̂,  J-,  ̂ ,  of  the  wire.  It  will  be  found  that  the 
tones  produced  are  as  follows,  calling  the  tone  produced  by  the 
whole  length,  d|, 

Whole  string 
1 d,  ••  1 

d  ..  2 

s  ..  3 

d'  ••  4 

n'  ••  5 

S"  ••  6 

Now  we  already  know,  that  the  ratios  of  the  vibration  numbers 
of  these  tones  are  those  given  in  the  third  column,  and  we  at  once 
see  that  these  latter  are  the  inverse  of  those  in  the  first  column. 

This  experiment  may  be  varied  in  an  infinite  number  of  ways. 
Thus,  by  placing  the  movable  bridge  so  that  the  lengths  of  the 
string  successively  cut  off,  are, 

8  4      3      2      3^1 

^'     9'     5'     4'     3'     6'     16'     2' 

it  will  be  found,  that  these  lengths  give  the  notes  of  the  diatonic 
scale,  and  the  vibration  ratios  of  the  successive  intervals  of  these 

from  the  tonic,  we  alrea^  '>-  know  to  be 
9  5      4      3      5      15 

^'     b'     4'     3'     2'     8'     8'        ' 

which  numbers  are  the  former  series  inverted.  Illustrations  of  this 

law  may  be  seen  in  musical  instruments  with  fixed  tones,  like  the 
piano  and  harp,  in  which  the  strings,  as  every  one  knows,  become 
shorter  and  shorter  as  the  notes  rise  in  pitch.  In  the  guitar, 
violin,  and  other  instruments  with  movable  tones,  variation  in 
pitch  is  obtained,  by  varying  the  length  of  the  vibrating  portion  of 
the  string. 

The  second  law  may  be  verified,  by  stretching  on  the  Sonometer, 
with  equal  weights,  two  wires  of  the  same  material,  the  diameter 
of  one  of  which  is,  however,  twice  that  of  the  other.  The  tones 

produced  will  be  found  to  be  an  octave   apart,  the  smaller  wire 
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giving  the  higher  note,  that  is,  the  diameters  of  the  wires  being  as 
1:2,  the  vibration  numbers  of  the  tones  produced  are  as  2  :  1. 
Illustrations  of  this  law  can  be  found  in  many  musical  instruments; 
thus,  the  second  string  of  the  violin  being  of  the  same  length  as 
the  first,  must  be  thicker  in  order  that  it  may  give  a  deeper  tone. 

To  prove  the  third  law,  stretch  a  string  on  the  Sonometer  with  a 
weight  of,  say  16R)s,  and  note  the  pitch  of  the  resulting  tone. 
Now  stretch  the  same  string  with  weights  of  251bs,  361bs,  and 
641bs  successively,  and  observe  the  pitch  of  each  tone.  Calling  the 
tone  produced  by  the  tension  of  161bs  (d),  those  produced  by  the 
tensions  of  25,  36,  and  641bs  will  be  found  to  be  (n),  (s),  and  (d'), 
respectively.  Now  we  have  already  ascertained,  that  the  vibration 
numbers  of  d,  n,  S,  d',  are  as  4  :  5  :  6  :  8  and  these  numbers  are  the 
square  roots  of  16,  25,  36,  and  64.  Examples  of  the  application  of 
this  law  are  to  be  met  with  in  the  tuning  of  all  stringed  instruments. 
The  violinist,  harpist,  or  pianoforte  tuner  stretches  his  strings  still 
more  to  sharpen,  and  relaxes  the  tension  to  flatten  them. 

The  fourth  law  can  be  proved  by  stretching  two  strings  of 
different  densities,  but  of  the  same  length  and  thickness,  by  the 
same  weight.  Now,  by  means  of  the  movable  bridge,  gradually 
shorten  the  vibrating  part  of  the  heavier  string,  till  it  gives  a  note 
of  the  same  pitch  as  the  whole  length  of  the  lighter  one.  Now 
measure  the  length  Z  of  the  lighter  string  and  the  length  Z^  of 
the  vibrating  portion  of  the  heavier  one ;  it  will  be  found  that 

Z    :    Z^    :  :    ̂  D^    :    ̂D        (I) 
D'  and  D  being  the  densities  of  the  heavier  and  lighter  string 
respectively.  These  densities  can  be  ascertained  by.  weighing  equal 
lengths  of  the  two  strings.  Let  N  be  the  number  of  vibrations  per 
second  performed  by  the  length  Z^  of  the  heavier  string,  then  if  N^ 
be  the  number  performed  by  the  whole  length  Z  of  the  same  string, 
we  know  by  the  first  law  that 

Z    :    Z^    :  :    N    :    Ny 

therefore  from  (I) 

N    :    Ny    :  :    ̂  D^    :    ̂ B, 

Now  as  N  also  denotes  the  number  of  vibrations  per  second  per- 
formed by  the  lighter  string,  this  proves  the  law.  As  illustrations 

of  the  application  of  this  law  to  musical  instruments,  the  weighting 
of  the  lowest  strings  of  the  pianoforte  by  coiling  wire  round  them. 
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may  be  mentioned.  The  density  of  the  fourth  string  of  the  violin 
is  increased  in  the  same  way. 

The  pitch  of  a  string,  stretched  between  two  fixed  supports,  is 
materially  affected  by  heat,  especially  if  the  string  be  of  metal 
A8  the  metal  expands  on  heating  and  contracts  on  cooling,  the 
tension  becomes  less,  and  the  pitch  is  lowered  in  the  former  case, 
while  the  tension  becomes  greater  and  the  pitch  rises,  in  the  latter. 
Heat  also  produces  a  difference  in  the  elasticity  of  strings  which 
acts  in  the  same  direction.  Strings  of  catgut  are  also  affected  by 
moisture,  which  by  swelling  the  string  laterally,  tends  to  shorten 
it,  thus  increasing  the  tension,  and  raising  the  pitch. 

We  pass  on  now,  to  discuss  the  conditions,  which  determine  the 
quality  of  the  tone  produced  by  a  stretched  string. 

A  B  c 

Fig.  46. 

Fasten  one  end  of  an  india-rubber  tube,  about  12  feet  long,  to 

the  ceiling  of  a  room,  and  taking  the  other  end  in  the  hand,  gently 
move  it  backwards  and  forwards.  It  is  easy  after  a  few  trials,  to 

set  the  tube  vibrating  as  a  whole  (fig.  46 A).  On  moving  the  hand 

more  quickly  the  tube  will  break  up  into  two  vibrating  segments 

(fig.  46,  B).  By  still  more  rapid  movements,  the  tube  can  be  made 

to  vibrate  in  three  (fig.  46,  C),  four,  five,  or  more  segments. 

Precisely  the  same  results  can  be  obtained,  by  fastening  the  tube 

at  both  ends,  and  agitating  some  intermediate  point.    The  points 
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D,  E,  F  (fig.  46),  wliich  seem  to  be  at  rest  are  termed  "  nodes  "  or 

"  nodal  points  "  and  the  vibrating  portion  of  the  tube  BD,  CE,  or 
E  F,  between  any  two  successive  nodes  is  called  a  ' '  ventral 

segment, ^^ 

To  understand  how  these  nodes  are     -  -  - 
formed,  let  ac,  fig.  47  (1)  represent  a 
string  similar  to  that  just  referred  to. 
By  jerking  the  end  a,  a  hump  a  &  is 
raised,  which  travels  to  the  other  end. 

In  fig.  47  (2)  this  hump  has  passed  on 

to  be.  In  fig.  47  (3)  it  has  been  re- 
flected, and  is  returning  to  the  end  a, 

but  on  the  opposite  side.  While  this 

has  been  going  on,  let  us  suppose 
another  impulse  to  have  been  given, 
80  as  to  produce  the  hump  a  b,  fig.  47 
(3).  Now  the  hump  &  c  is  about  to  pass 
on  to  a,  and  in  so  doing,  the  point  b 
must  move  to  the  left,  but  the  hump 
a  6  is  about  to  travel  on  to  c,  and  in  so 

doing  must  move  the  point  b  to  the 
right.  The  point  b,  thus  continually 
urged  in  contraiy  directions  with  equal 
forces,  while  the  humps  pass  one 
another,  remains  at  rest.  Suppose  that 
the  hump  takes  one  second  to  travel 
from  a  to  c  and  back   again :    then  it 

is  evident  that  if  an  impulse  is  given  every  half  second,  the 
above  state  of  things  will  be  permanent,  and  the  two  parts  ab,  be 
will  appear  to  vibrate  independently  of  each  other,  fig.  47  (4),  the 
point  b  forming  a  node.  A  little  reflection  will  show  that,  on  the 
same  supposition,  if  the  impulses  follow  one  another  at  intervals  of 

one-third  of  a  second,  two  nodes  and  three  ventral  segments  will 
be  formed,  and  so  on.  When  therefore  a  string  vibrates  in  2,  3,  4 

segments,  each  segment  vibrates  2,  3,  4  times  as  rapidly  as  the 
string  vibrating  as  a  whole. 

A  tuning-fork  may  be  used  with  great  advantage,  in  setting  up 
these  segmental  vibrations.  One  end  of  a  silk  thread  is  fastened  to 

one  of  the  prongs  of  the  fork,  the  larger  the  better ;  the  other  end 
being  either  wound  round  a  peg,  or  after  passing  over  a  pulley, 

(f) 
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ftttached  to  a  weight.  On  bowing  the  fork,  the  string  is  set  vibrating 
in  one,  two,  three,  or  more  segments,  according  to  its  degree  of 
tension. 

The  two  ends  of  a  stretched  string  being  at  rest,  it  is  evident  that 
the  number  of  ventral  segments,  into  which  it  can  break  up,  must 
be  a  whole  number  ;  it  cannot  break  up  into  a  certain  number  of 
ventral  segments  and  a  fraction  of  a  segment.  Any  point  of  the 
string  capable  of  being  a  node,  can  be  made  such,  by  lightly  touch- 

ing that  point,  so  as  to  keep  it  at  rest,  and  bowing  or  plucking  at  the 
middle  of  the  corresponding  ventral  segment.  Thus,  if  the  stiing 
of  the  Sonometer  be  lightly  touched  at  the  centre,  and  bowed  about 
^  of  its  length  from  the  end,  it  will  break  up  into  two  (or  possibly 
fiix)  ventral  segments,  with  a  node  in  the  centre.  Again,  if  the 
string  be  lightly  touched  at  ̂   of  its  length  from  the  end,  and  bowed 
about  the  middle  of  this  third,  it  will  vibrate  in  three  segments 
(the  other  ̂   dividing  into  two)  separated  by  two  nodes.  That  the 
larger  part  of  the  string,  in  this  experiment,  does  divide  into  two 
segments  separated  by  a  node,  may  be  shown,  by  placing  riders  on 
the  string,  before  it  is  bowed,  one  in  the  centre  of  this  part,  where 
the  node  occurs,  and  one  in  the  middle  of  each  of  the  two  ventral 
segments.  When  the  string  is  now  lightly  touched  at  ̂   of  its 
length  from  the  end,  and  bowed  as  before,  the  riders  in  the  middle 
of  the  ventral  segments  will  be  thrown  off,  but  that  at  the  node 
will  keep  its  place  (fig.  48).     This  experiment  may  be  repeated 

Fig.  48 

with  a  larger  number  of  nodes.  Thus,  suppose  four  nodes  are 
required.  Divide  the  string  into  five  equal  parts,  as  there  will 
evidently  be  that  number  of  segments,  and  at  each  of  the  four 
points  of  division,  place  a  coloured  rider,  with  a  white  one 
equidistant  between  each  pair,  and  also  between  the  last  one  and 
the  end.  Remove  the  coloured  rider  nearest  the  other  end  and 

lightly  touch  the  point  where  it  stood,  with  the  finger.  Draw  the 
bow  gently  across  the  string,  midway  between  this  point  and  the 
end,  and  the  white  riders  will  fall  off,  while  the  coloured  ones  will 
remain  at  rest  (fig.  49). 
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-<  / 

^^ 

V>  ^  A 

Fio.  49. 

A  stretched  string  can  therefore  vibrate  as  a  whole,  that  is,  with 
one  ventral  segment,  or  with  two,  three,  four,  five,  six,  or  more 
ventral  segments,  but  not  with  any  intermediate  fraction.  Now  if 
we  call  the  note  given  forth  by  a  string,  when  its  whole  length  is 
vibrating  (d|)  ;  we  have  already  learnt,  that  when  its  two  halves 
only  are  vibrating,  we  get  the  octave  above,  (d) ;  if  it  vibrate  in 

three  ventral  segments  we  shall  get  the  twelfth  above,  (s) ;  with  four 

segments,  (d'j ;  with  five,  (n');  and  so  on.  Only  those  notes  belong- 
ing to  the  series  1,  2,  3,  4,  5,  &c.,  can  occur;  no  note  intermediate 

between  these  can  be  produced.  It  will  be  at  once  observed,  that 
this  is  the  series  of  partial  tones,  and  the  idea  at  once  suggests 

itself,  that  the  occurrence  of  partials  in  the  tones  of  stringed  instru- 
ments is  due  to  the  fact,  that  a  string  not  only  vibrates  as  a  whole, 

but  at  the  same  time  in  halves,  thirds,  quarters,  &c.,  each  segment 
giving  rise  to  a  simple  sound  of  its  own  particular  pitch. 

The  student  may  convince  himseK  that  this  is  reaUy  the  case,  by 
a  variety  of  experiments.  Thus,  while  a  string  is  vibrating  and 
giving  forth  a  compound  tone  in  which  the  fifth  partial  can  be 
heard,  lightly  touch  it  with  a  feather  at  a  point,  distant  I  of  its 
length  from  the  end  ;  all  the  partials  except  the  fifth,  which  has  a 
node  at  this  point,  will  rapidly  die  out,  but  this  one  will  be  plainly 
heard,  showing  that  the  string  must  have  been  vibrating  in  five 
segments.  Again,  touch  the  middle  of  the  string  in  a  similar 
manner,  after  setting  it  in  vibration,  and  all  the  partials  except 
those  which  require  a  node  at  this  point  will  vanish,  that  is,  only 
the  second,  fourth,  sixth,  &c.,  will  remain.  Further,  pluck  the 

string  at  its  middle  point ;  all  the  tones  which  require  a  node  at 

this  point  must  then  be  absent,  only  the  first,  third,  fifth,  seventh, 

&c.,  being  heard.  In  this  way,  the  presence  or  absence  of  any  par- 
ticular partial  of  a  compound  tone  may  be  ensured. 

The  occurrence  and  relative  intensities  of  partials  on  stringed 

instruments,  depend  upon  : — 
1st.  The  nature  of  the  string. 

2nd.  The  kind  of  hammer,  bowing,  plectrum,  &c. 

3rd.  The  place  where  the  string  is  struck,  bowed,  or  plucked 
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With  regard  to  the  string,  the  more  flexible  it  is,  the  more 
readily  will  it  break  up  into  vibratory  segments,  and  therefore  the 
greater  will  be  the  number  of  partials  in  its  tones.  Thick  stout 
strings,  such  as  are  used  for  the  lower  notes  of  the  harp,  cannot 
from  their  rigidity  break  up  into  many  segments,  and  therefore  the 
fundamental  will  be  louder  than  the  other  partials.  On  the  other 
hand,  thin  strings  of  catgut,  such  as  first  violin  strings,  readily 
vibrate  in  many  segments,  so  that  their  tones  contain  many 
partials.  Still  more  is  this  the  case  with  a  long  fine  metallic  wire, 
in  which  it  is  possible  to  hear  some  fifteen  or  twenty  partials,  the 
fundamental  being  very  faint  or  even  inaudible.  The  tinkling 
metallic  quality  of  tone  from  such  a  wire,  is  due  to  the  prominence 
of  the  high  partials  above  the  seventh  or  eighth,  which  lie  at  the 
distance  of  a  tone,  or  less  than  a  tone,  apart.  Again,  the  steel 
wires  which  give  the  highest  notes  in  the  pianoforte,  being  already 
so  short,  cannot  readily  break  up  into  vibrating  segments,  and 
hence  the  highest  tones  of  this  instrument  are  nearly  simple. 

As  we  have  seen,  the  three  chief  methods  of  setting  strings  in 
vibration  are :  by  a  blow  from  a  hammer,  by  bowing,  and  by 
plucking.  In  the  first  method  (employed,  for  example,  in  the 
pianoforte)  the  quality  of  the  tone  is  largely  affected  by  the  nature 
of  the  hammer.  If  it  is  very  hard,  sharp,  and  pointed,  the  part  of 
the  string  which  is  struck  by  it  will  be  affected,  and  the  hammer 
will  have  rebounded,  before  the  effect  of  the  blow  has  time  to  travel 
along  the  length  of  the  wire.  Thus  small  ventral  segments  will  be 
formed,  and  prominent  upper  partials  will  be  produced,  the  lower 
ones  being  feeble  or  absent.  On  the  other  hand,  if  a  very  soft, 
rounded  hammer  be  used,  the  blow  being  much  less  sudden,  the 
movement  of  the  wire  will  have  time  to  spread,  and  a  powerful 
fundamental  may  be  expected.  On  the  pianoforte,  both  extremes 
are  avoided,  by  covering  the  wooden  hammers  with  felt,  so  that  when 
they  strike  the  wire,  the  rebound  is  not  absolutely  instantaneous  ; 
nevertheless  the  time  during  which  the  hammer  and  wire  are  in 
contact  is  extremely  short.  Similarly,  in  plucking;  a  soft, 
rounded  instrument,  such  as  the  finger  tip,  gives  a  stronger 
fundamental  and  fewer  high  partials,  than  the  harder  and  sharper 
quill,  that  used  to  be  employed  in  the  harpsichord. 
The  quality  of  the  tone,  given  forth  by  a  stretched  string, 

depends  largely  upon  the  point  at  which  it  is  struck,  bowed,  or 
plucked.  We  have  already  seen,  that  the  point  in  question  cannot 
be  a  node ;  it  is  more  likely  to  become  the  middle  of  a  ventral 
segment.     All  the  partials,  therefore,  that  require  a  node  at  that 
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point,  will  be  absent.  Thus  if  the  string  be  struck  at  the  middle 
point,  only  the  odd  partials  will  be  present  in  the  compound  tone 
produced :  if  the  string  be  struck  at  a  point,  one  third  of  its  length 
from  the  end,  the  3rd,  6th,  and  9th  partials  will  be  absent.  Again, 
if  a  string  be  struck  at  a  point,  one  seventh,  one  eighth,  or  one 
ninth  of  its  length  from  the  end,  the  7th,  8th,  or  9th  partials 
respectively,  will  be  absent.  Now,  these  are  the  first  three  dissonant 
partials  of  a  compound  tone,  so  that  it  improves  the  quality  of  tone 
to  have  them  absent;  and  it  is  a  curious  fact,  as  Helmholtz 
observes,  that  pianoforte  makers,  guided  only  by  their  ears,  have 
been  led  to  place  their  hammers,  so  as  to  strike  the  strings  at  about 
this  spot. 

With  regard  to  the  quality  of  tone  in  the  pianoforte,  it  will  be 
found,  that  in  the  middle  and  lower  region  of  these  instruments, 
the  tones  are  chiefly  composed  of  the  first  six  or  seven  partials,  the 
first  three  being  usually  very  prominent ;  in  fact,  the  second  and 
third  are  not  unfrequently  louder  than  the  fundamental.  As  the 
first  six  partials  form  the  tonic  chord,  the  tones  that  have  them 
well  balanced,  sound  peculiarly  rich.  The  result  of  pressing  down 
the  loud  pedal  should  be  noted.  The  idea  usually  entertained  is, 
that  by  keeping  the  dampers  raised  from  the  wires,  the  tones  are 
prolonged  after  the  fingers  are  taken  oil  the  notes.  This  is  true, 
but  not  the  whole  truth.  For  as  the  dampers  are  raised  from  all 
the  wires,  all  the  latter  which  are  capable  of  vibrating  in  unison 
with  the  already  vibrating  wires,  will  do  so.  Eor  example,  if  the 
loud  pedal  be  depressed,  and  the  F|  in  the  Bass  clef  be  struck,  the  F2 
wires  an  octave  lower  will  be  set  vibrating  in  two  halves  ;  the  Bj^g 
a  fifth  below  that,  in  three  parts ;  the  Fg,  two  octaves  below  the 
note  struck,  in  four  parts ;  and  so  on,  each  section  sounding  forth 
the  F|.  Again,  the  wires  which  were  struck  will  not  only  vibrate  as 
a  whole,  giving  F|,  but  in  halves  giving  F,  which  will  start  the 

wires  of  the  F  digital,  and  will  also  set  the  Bb2  wii'es  vibrating  in 
three  sections.  Further,  the  original  wires  will  vibrate  in  three 
segments  producing  the  partial  C,  and  this  will  start  the  wires  cor- 

responding to  C  and  C,  and  so  on.  It  is  easy  to  see,  therefore, 
that  when  the  loud  pedal  is  held  down,  and  a  low  note  struck,  the 
number  of  wires  set  vibrating  is  very  great,  giving  an  effect  of  in- 

creased richness.  At  the  same  time,  the  necessity  of  raising  the 
pedal  at  every  change  of  chord  is  very  clearly  seen.  The  result  of 
pressing  down  the  soft  pedal  is  to  slide  the  whole  of  the  hammers 
along  transversely,  through  a  short  distance,  so  that  they  strike 
only  one  of  the  two  or  three  wires  that  are  allotted  to  each  note. 
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A  great  number  of  partials  are  usually  present  in  the  tones  pro- 
ducod  by  the  violin,  at  least  the  first  eight  being  nearly  always 
present.  The  peculiar  incisiveness  of  tone  is  probably  due  to  the 
presence  of  partials  aboye  the  eighth,  which,  as  will  be  seen  from 
the  table  on  page  72,  lie  very  closely  together.  The  violin  has  four 

strings  tuned  in  fifths,  the  highest  being  tuned  to  E' ;  the  lower 
limit  is  therefore  G|.  The  viola  or  tenor  violin,  which  is  slightly 
larger  than  the  above,  has  also  four  strings  tuned  in  fifths,  the 
highest  being  A ;  the  lower  limit  is  consequently  C|.  The  violoncello 
has  also  four  strings,  each  of  which  is  tuned  an  octave  lower  than 

thf>  corresponding  one  in  the  viola.  The  lower  limit  is  therefore 
C.J.  The  double  bass  usually  has  only  three  strings,  tuned  in 

fourths,  the  highest  being  G2;  its  deepest  tone  is  thus  A3,  only  two 
notes  below  the  violoncello,  but  its  larger  body  of  tone  makes  it 
seem  of  a  deeper  pitch  than  it  actually  is. 

Summary. 

The  three  essentials  of  a  stringed  instrument  are  :  (I),  the  string 

(2),  the  means  of  exciting  it ;  (3),  a  sound-board  or  resonator. 
The  vibration  number  of  a  stretched  string  varies 

Directly  as  the  square  root  of  the  tension, 

Inversely    ,,  ,,         ,,  ,,       density, 

,,  ,,      length, 
„  ,,      diameter. 

Stringed  instruments  flatten  with  rise  of  temperature,  and  vice 
versa. 

Points  of  rest,  or  rather  of  least  motion,  m  a  vibrating  string 
are  termed  rwdes.  The  vibrating  part  of  the  string  between  two 
consecutive  nodes  is  called  a  ventral  segment.  The  middle  of  a 

ventral  segment  is  sometimes  referred  to  as  an  antinode. 

The  occurrence  of  partials  in  the  tone  of  a  stretched  string,  is 

due  to  the  fact,  that  it  vibrates,  not  only  as  a  whole,  but  simul- 
taneously also  in  halves,  thirds,  quarters,  &c. ;  each  segment, 

producing  a  simple  tone  or  partial,  of  a  pitch  and  intensity 
corresponding  to  its  length  and  amplitude  respectively. 

The  occurrence  and  intensities  of  these  partials  depend  upon 

(1).  The  nature  of  the  string. 
(2).  The  nature  of  the  excitation. 
(3).  The  position  of  the  point  where  the  string  is  excited. 
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To  ensure  tlie  absence  of  any  particular  overtone,  the  string 
should  be  excited  at  that  point  where  this  overtone  requires  a  node 
for  its  formation. 

To  favour  the  production  of  any  particular  overtone,  the  string 
should  be  excited  at  that  point  where  this  overtone  requires  an 
aniinodf^ 



88 

CHAPTER    X 

Elue-pipes  and  Eeeds, 

It  will  bo  found  on  examination,  that  in  all  wind  instruments,  the 
air  contained  in  the  tubes  of  such  instruments  is  set  in  vibration, 
either  by  blowing  against  a  sharp  edge,  at  or  near  the  mouth  of  the 
tube,  as  in  the  flute  and  the  flue  pipes  of  the  organ ;  or  by  the 
vibration  of  some  solid  body  placed  in  a  similar  position,  as  in  the 
clarinet  and  the  reed  pipes  of  the  organ.  We  shall  proceed  first,  to 
investigate  the  conditions  which  deteimine  pitch,  quality,  and 
intensity  in  the  former  class  of  mstruments. 

/ 

Mii 

Fio.  60. Fia  61. 
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As  the  type  of  instruments  of  this  class,  we  may  take  an  ordinary 

organ  pipe.  Such  pipes  are  constructed  either  of  metal  or  wood ; 
the  former  being  an  alloy  of  tin  and  lead,  or  for  large  pipes,  zinc ; 
the  latter,  pine,  cedar,  or  mahogany.  Fig.  50  represents  a  wooden, 
and  fig.  51a  metal  pipe,  both  in  general  view  and  in  section.  They 
may  be  closed,  or  open  at  the  upper  end.  Fig.  52  shows  an  enlarged 
eection  of  the  lower  part.  The  air  from  the  wind  chest  enters  at 
(a)  and  passes  into  the  chamber  (c),  the  only  outlet 
from  which  is  the  linear  orifice  at  (d).  The  air 
rushing  from  {d)  in  a  thin  sheet,  strikes  against  the 
«harp  edge  (e),  and  the  column  of  air  in  the  pipe  is 
set  in  vibration.  The  precise  way  in  which  this  sheet 

of  air  acts  is  not  quite  clear.  Helmholtz  says  ' '  The 
directed  stream  of  air  breaking  against  the  edge, 
generates  a  peculiar  hissing  or  rushing  ncise.  which 
is  all  we  hear  when  a  pipe  does  not  speak,  or  when  we 
blow  against  the  edges  of  a  hole  in  a  flat  plate 
instead  of  a  pipe.  Such  a  noise  may  be  considered 
as  a  mixture  of  several  inharmonic  tones  of  nearly 
the  same  pitch.  When  the  air  chamber  of  the  pipe 
is  brought  to  bear  upon  these  tones,  its  resonance 
strengthens  such  as  correspond  with  the  proper  tones 
of  that  chamber,  and  makes  them  predominate  over 

the  rest,  which  this  predominance  conceals."  On  the 
other  hand,  this  thin  sheet  of  air  has  been  compared 
by  Hermann  Smith  to  an  ordinary  reed,  and  called 

by  him  an  "  aeroplastic  reed."  His  theory  is,  that 
in  passing  across  the  embouchure  {ed)  the  aeroplastic  reed 
momentarily  produces  an  exhaustive  effect  tending  to  rarify  the 
air  in  the  lower  part  of  the  pipe.  This,  by  the  elasticity  of  the 
air,  soon  sets  up  a  corresponding  compression,  and  these  alternate 
rarefactions  and  condensations  reacting  upon  the  lamina,  cause  it 
to  vibrate,  and  to  communicate  its  vibrations  to  the  air  within  the 

Fig. 

pipe. 
The  pitch  of  the  fundamental  tone  given  forth  by  a  pipe,  depends 

upon  its  length;  the  longer  the  pipe  the  deeper  the  note.  The 
reason  of  this  has  been  already  fully  explained  in  Chapter  VII. 
To  recapitulate  what  is  there  stated  and  proved  :  The  vibration 
number  of  the  sound  produced  by  an  open  pipe,  may  be  found,  by 
dividing  the  velocity  of  sound  by  twice  the  length  of  the  pipe; 
that  of  a  stopped  pipe,  by  dividing  by  four  times  its  length.  In 

the  latter  casQ  the  internal  length  must  be  measured,  as  "length 
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of  pipe"  really  means,  the  length  of  the  vibrating  column  of 
air. 

The  rule  just  given,  although  approximately  true  in  the  case  of 
narrow  pipes,  cannot  be  depended  upon,  when  the  diameter  of  the 
pipe  is  any  considerable  fraction  of  its  length.  The  following  rulo 

quoted  from  Ellis'  "History  of  Musical  Pitch"  is  much  moi-e 
accurate.  Divide  20,080  when  the  dimensions  are  in  inches,  and 

510,000  when  the  dimensions  are  in  millimetres,  by  :  — 
(1).  Three  times  the  length,  added  to  five  times  the  diameter, 

for  cylindrical  open  pipes. 

(2).  Six  times  the  length,  added  to  ten  times  the  diameter, 
for  cylindrical  stopped  pipes. 

(3).  Three  times  the  length,  added  to  six  times  the  depth 
(internal  from  front  to  back),  for  square  open  pipes. 

(4).  Six  times  the  length,  added  to  twelve  times  the  depth, 
for  square  stopped  pipes. 

As  a  matter  of  fact,  however,  the  note  produced  by  a  stopped 
pipe  is  not  exactly  the  octave  of  an  open  pipe  of  the  same  length  ; 
in, fact,  it  varies  from  it  by  about  a  semitone. 

The  pitch  of  a  pipe  is  also  affected  by  the  pressure  of  the  wind. 
The  above  rule  supposes  this  pressure  to  be  capable  of  supporting  a 
column  of  water  3^  inches  high.  If  this  pressure  be  reduced  to  2£, 
the  vibration  number  diminishes  by  about  1  in  300 ;  if  increased  to 
4,  it  rises  by  about  1  in  440.  The  pitch  is  also  affected  by  the 
size  of  the  wind  slit  and  the  orifice  at  the  foot :  by  the  shape  and 
shading  of  the  embouchure ;  and  by  the  pressing  in  or  pressing  out 

of  the  edges  of  its  open  end,  as  by  the  "tuning  cone." 
As  already  stated,  the  velocity  of  sound  in  air,  at  0°  Centigrade, 

or  32°  Fahrenheit,  is  1,090  feet  per  second,  increasing  about  two 
feet  for  every  rise  of  temperature  of  1°  0.  and  about  one  foot  for 
1°  F.  The  velocity  of  sound  at  any  temperature  may  be  more 
accurately  determined  from  the  formula 

F  =  1,090  -v/l  +  at 

where  t  is  the  centigrade  temperature  and  a  =  ̂ y^,  the  coefficient 
of  expansion  of  gases.  Now,  as  the  vibration  numbers  of  the 
sounds  emitted  from  stopped  and  open  pipes  may  be  approximately 
found  by  dividing  the  velocity  of  sound  by  four  times  and  twice 
their  lengths  respectively,  it  is  evident  that  such  vibration  numbers 
will  vary  with  the  temperature;  the  higher  the  temperature,  the 
sharper  the  pitch,  and  vice  versa.     Furthermore,  the  length  of  thd 
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pipe  itself  varies  with  change  of  temperature,  increasing  with  a 
rise  and  shortening  again  with  a  fall  of  temperature.  This  will 
obviously  have  a  contrary  effect  on  the  pitch,  but  to  a  very  much 
smaller  extent;  in  fact,  in  wooden  pipes  the  expansion  is  quite 

inappreciable.  Thus  the  general  effect  of  rise  of  temperature  in 
organ  pipes  is  to  sharpen  them. 

It  is  evident,  from  the  above,  that  the  wooden  pipes  of  an  organ 
will  sharpen  somewhat  more  than  the  metal  ones,  for  the  same  rise 
of  temperature.  Furthermore,  it  is  found  that  small  pipes  become 

relatively  sharper  than  large  ones,  under  the  same  increment  of 
heat ;  and  not  only  is  this  the  case,  but  the  change  takes  place  much 
more  rapidly  in  small  pipes  than  in  large  ones,  and  in  open  than  in 

clotsed  pipes.  On  the  other  hand,  although  metal  pipes  do  not 

sharpen  quite  so  much  as  wooden  ones,  they  are  affected  much 
more  rapidl3^  According  to  Perronet  Thompson,  diminution  of 
atmospheric  pressure  sharpens  the  tones  of  pipes,  and  vice  versa. 
He  states  that  a  fall  of  an  inch  sharpens  the  tuning  C  by  a 
comma. 

The  lowest  note  producible  in  the  largest  organ  is  C4  =  16,  and 
is  obtained  from  an  open  pipe  about  32  feet  long.  This  pipe 
together  with  those  giving  notes  of  lower  pitch  than  C3  =  32,  are 

said  to  belong  to  the  32  foot  octave.  C3  =:  32  is  produced  by  an 
open  pipe  about  16  feet  long  ;  hence,  from 

above,  constitutes  the  16  foot  octave. 

>>  J5  8      ,,  ,, 

4 

>»  »  •^         >>  5> 

»  »»  ^         >>  >» 
1 
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i»  »>  4       >>  >» 

Increase  of  intensity  in  the  tones  of  an  organ  cannot  be  obtained 

by  increase  of  force  in  blowing  :  for  as  we  have  just  seen,  a  verj' 
slight  increase  in  the  wind  pressure  alters  their  pitch  slightly,  and 
still  greater  increase,  as  we  shall  presently  see,  would  affect  their 
quality  also.  Hence,  increase  of  intensity  on  the  organ  has  to  be 
produced  by  bringing  more  pipes  into  action  by  means  of  stops,  or 
by  enclosing  the  pipes  in  a  case,  which  can  be  opened  or  closed  at 
pleasure,  as  in  the  swell  organ. 

We  have  now  to  turn  our  attention  to  the  conditions  that  deter- 

mine the  occun-ence  of  overtones,  in  the  tones  of  organ  pipes. 
Procure  an  ordinary  open  wooden  or  metal  organ  pipe  and  blow 

C3  =     32totl 
tieB3 

a    =      64     „ 

B., 

C,    =    128     „ 

B, 

C     =    256     „ B 

C"    =    512     „ 

B' 

C2  =  1024     „ 

B2 

C3  =  2048     „ 

B3 
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very  gently  into  it.  The  fundamental  tone  of  the  pipe  which  wo 

will  call  (d|)  will  be  produced.  On  gradually  increasing  the 
strength  of  the  wind,  a  point  will  be  readied,  at  which  this  note 
will  vanish,  and  a  note  (d),  an  octave  higher,  will  be  heard.  On 

blowing  harder  still,  this  (d)  will  cease,  and  a  note  (s)  a  fifth  above 

will  be  given  forth,  and  so  on.  All  these  notes  d.  s,  d',  n',  &C.,. 
above  the  fundamental,  which  thus  apparently  make  their  appear- 

ance successively,  are  usually  termed  the  harmonics  of  the  pipe. 

In  order  to  understand  how  these  tones  are  produced,  let  us  turn 

back  to  page  60.     We  saw  there  how  a  condensation  entering  one 

^^  end  (a)  of  the  tube  (fig.  53),  proceeds  to  the  other  end 
(i),  and  is  there  reflected  as  a  rarefaction.  Now  suppose 
that  at  the  moment  this  rarefaction  starts  back  towards 

(a)  another  rarefaction  starts  from  (a) ;  what  will  happen 
when  they  meet  in  the  centre  ?  The  wave  from  (&),  if 
none  other  were  present,  would  cause  the  particles  of 

air  in  the  centre  (c)  to  move  upwards ;  that  from  (a) 
would  move  them  with  equal  force  downwards.  Under 

these  circumstances  the  particles  in  the  centre  will 
remain  at  rest.  But,  just  as  in  the  case  of  the  string, 
the  two  pulses  of  rarefaction  will  not  interfere  with 
one  another;  each  will  pursue  its  course  to  the  end  of 
the  tube,  where  each  will  be  reflected,  as  formerly 

explained,  as  a  condensation.  Now  when  these  pulsed 
of  condensation  meet  in  the  centre  of  the  tube,  that 

which  comes  from  (6),  if  it  alone  were  present,  would 
cause  the  air  particles  there  to  move  downwards,  while 

that  from  (a),  would  move  them  in  the  opposite 
Fig.  63.  direction.  The  result,  as  before  will  be,  that  the  air 

particles  in  the  centre  will  remain  at  rest;  and  com- 
paring these  pipes  with  the  strings  already  studied,  we  see  that 

under  these  circumstances,  the  middle  of  the  tube  becomes  a 

"node,"  while  the  ends,  being  places  of  greatest  vibration,  corre- 

spond to  the  middles  of  "ventral  segments."  Further,  as  the 
impulses  enter  an  open  pipe,  and  are  reflected  at  the  ends,  these 
points  must  always  be  places  of  maximum  vibration,  that  is,  must 
always  correspond  to  the  middle  of  ventral  segments.  But  two 

ventral  segments  must  necessarily  be  separated  by  a  node:  therefore, 
the  above  is  the  simplest  way  in  which  the  column  of  air  in  an 

open  tube  can  vibrate,  and  consequently  this  form  of  vibration 
must  give  the  fundamental  tone  of  the  pipe.  It  may  be  represented 

by  fig.  54  (A),  in  which  the  straight  line  in  the  centre  shows  the 
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position  of  the  node,  and  the  dotted  lines  give  the  associated  wave 
form. 

\      I 

}\ 

!  \ 

/\ 

Fig.  54. 

It  is  easy  to  show  experimentally,  that  an  open  pipe  which  is  giving 
forth  its  fundamental,  has  a  node  or  place  of  least  vibration  in  the 
centre,  and  two  places  of  maximum  vibration,  one  at  each  end.  Let 
such  a  pipe  betaken,  the  front  of  which  must  be  of  glass.  Make  a  little 
tambourine,  by  stretching  a  piece  of  thin  membrane  over  a  little 
hoop.  Place  a  few  grains  of  sand  on  the  membrane,  which  by 
means  of  a  cord  must  then  be  gently  lowered  in  a  horizontal 
position  into  the  sounding  pipe.  On  entering  it,  the  sand  is  at  first 
violently  agitated,  but  as  the  little  tambourine  descends,  it  becomes 
less  and  less  disturbed,  till  at  the  centre,  the  sand  remains  quiet; 
on  lowering  it  still  more,  the  sand  again  begins  to  dance,  becoming 
increasingly  agitated  as  the  bottom  is  approached. 
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Again,  from  what  has  been  said  above,  it  •will  be  seen,  that  at  the 
centre,  where  the  node  occurs,  the  air  is  alternately  compressed  and 
rarefied ;  compressed,  when  two  condensations  meet,  and  rarefied, 
when  two  rarefactions  meet.  This  can  also  be  experimentally 
verified  ;  for  if  the  pipe  were  pierced  at  the  centre  and  the  hole 

covered  air-tight  by  a  piece  of  sheet  india-rubber,  this  latter  being 
acted  upon  by  the  condensations  and  rarefactions,  would  be 
alternately  pressed  outwards  and  inwards.   The  organ  pipe  (fig.  65) 

FiQ.  55. 

has  been  thus  pierced  at  the  centre  B,  and  also  at  A  and  0,  and  the 
membranes  covered  by  three  little  capsules  (a  section  of  each  of 
which  on  an  enlarged  scale  is  shown  at  the  left  of  the  figure),  from 
the  ca\aties  of  which  proceed  three  little  gas  jets,  the  gas  being 
supplied  by  the  three  bent  tubes  which  come  from  the  hollow 
chamber  P,  which  again  is  supplied  by  the  tube  S.     Now  on  blow 
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iiig  very  gently  into  the  pipe,  so  as  to  produce  its  fundamental,  all 
three  flames  are  agitated,  but  the  central  one  most  so.  Turning 
down  the  gas  till  the  flames  are  very  small,  and  blowing  again,  the 
middle  one  will  be  extinguished,  while  the  others  remain  alight. 

Inasmuch  as  the  two  ends  of  an  open  pipe  must,  as  we  have 
shown,  coiTGspond  to  the  middle  of  ventral  segments,  the  next 
simplest  way  in  which  such  a  pipe  can  vibrate,  is,  with  two  nodes, 
as  shown  in  fig.  54  B.  In  A  there  are  two  half  segments,  which 
are  equivalent  to  one ;  in  B  there  are  two  half  segments  and  one 
whole  one,  equivalent  to  two  segments  ;  the  rate  of  vibration  in  B 
will  therefore  be  twice  as  rapid  as  in  A.  Accordingly,  we  find  that 
the  next  highest  tone  to  the  fundamental,  which  can  be  produced 
from  an  open  pipe,  is  its  octave.  The  occurrence  of  the  two  nodes 
in  B  can  be  experimentally  proved  by  the  pipe  of  fig.  55,  for  if  this 
pipe  be  blown  more  sharply,  so  as  to  produce  the  octave  of  the 
fundamental,  the  two  flames  A  and  C  will  be  extinguished,  while 
B  will  remain  alight.  C  and  D,  fig.  54,  represent  the  next  simplest 
forms  of  vibration  with  three  and  four  nodes  respectively.  The 
rate  of  vibration  in  (C)  and  (D)  will  obviously  be  three  and  four 
times  respectively  that  in  (A).  Proceeding  in  this  way,  it  will  be 
found  that  the  rates  of  all  the  possible  modes  of  segmental  vibration 
in  an  open  pipe,  will  be  as  1,  2,  3,  4,  5,  &c.,  and  this  result,  thus 
theoretically  arrived  at,  is  confirmed  by  practice ;  for  we  have  seen 
that,  calling  the  fundamental  tone  (d|) ;  the  harmonics  produced 
from  such  a  pipe  are,  d,  s,  d',  n',  &c.,  the  vibration  numbers  of 
which  are  as  2,  3,  4,  5,  &c. 

"We  have  hitherto  supposed  that  each  of  these  notes  successively 
appears  alone,  but  this  is  rarely  the  case,  usually  the  fundamental 
is  accompanied  by  one  or  more  of  these  tones.  When  they  are  thus 
simultaneously  produced,  it  is  convenient  to  term  them  overtones, 
or,  together  with  the  fundamental,  partials,  as  in  the  case  of 
stretched  strings.  In  order  to  explain  the  simultaneous  production 
of  these  partials,  we  simply  have  to  suppose  the  simultaneous 
occurrence  of  the  segmental  forms  represented  in  fig.  54.  We  thus 
see  that  the  notes  obtainable  simultaneously  from  an  open  pipe,  are 
the  complete  series  of  partial  tones,  whose  rates  of  vibration  are  as 
the  numbers  1,  2,  3,  4,  5,  &c. 

Coming  now  to  stopped  pipes  we  have  seen  in  Chap.  VII,  page  61, 
that  a  pulse  of  condensation  entering  a  stopped  pipe,  travels  to  the 
closed  end,  and  is  there  reflected  back  unchanged.  On  arriving  at 
the  open  end,  it  is  reflected  back  as  a  pulse  of  rarefaction,  which  on 
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reachiing  the  stopped  end,  is  reflected  unaltered.  Now  the  closed 
end  of  a  stopped  pipe  must  always  be  a  node,  since  no  longitudinal 
vibrations  of  the  air  particles  can  occur  there ;  and  as  we  have  seen 
above,  the  open  end  must  be  the  middle  of  a  ventral  segment, 
therefore  the  simplest  form  in  which  the  air  column  in  a  stopped 
pipe  can  vibrate,  is  that  represented  in  (A),  fig.  56.     This  form  of 

1  ! 

V 

/ 

A  B  C  ^ 
Fig.  56. 

vibration  must  therefore  produce  the  fundamental  tone  of  the  pipe. 
Comparing  it  with  the  simplest  form  in  which  the  air  in  an  open 
pipe  can  vibrate.  A,  fig.  54,  it  will  be  seen  that  the  open  pipe  has 
two  half  segments,  while  the  stopped  has  only  one  ;  consequently, 
if  the  pipes  be  of  equal  length  as  represented,  the  vibrating  segment 
of  the  latter  is  twice  as  long  as  the  former.  Hence,  as  we  have 
already  seen,  the  fundamental  tone  of  a  stopped  pipe,  is  an  octave 
lower  than  that  of  an  open  one  of  the  same  length. 
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T\ie  next  simplest  -way  in  which  the  air  in  a  stopped  pipe  can 
vibrate,  must  be  that  in  which  two  nodes  are  formed,  and  these 

must  necessarily  occui*  as  shown  in  B,  fig.  56,  where  the  end  of  the 
pipe,  as  we  have  seen,  forms  one  node,  the  place  of  the  other  being- 
represented  by  the  vertical  line.  In  order  to  understand  the 

formation  of  a  node  at  this  point,  let  fig.  57  represent  a  stopped 

pipe,  and  let  ah,  he,  cd,  be  each  one-third  of  its  length. 
Further,  let  it  be  supposed,  that  the  pulses  of  condensation 

and  rarefaction  successively  enter  the  open  end,  at  inter- 
vals of  time,  each  equal  to  that  required  for  the  pulse  to 

travel  from  {a)  to  (c),  that  is,  through  two- thirds  of  the 
length  of  the  tube.  For  the  sake  of  simplicity,  we  will 
suppose,  that  the  interval  of  time  is  one  second,  although 
of  course  it  is  really  but  a  minute  fraction  of  that  period. 
First  let  a  pulse  of  condensation  C|  enter  the  pipe.  After 
the  lapse  of  a  second,  that  is  at  the  beginning  of  the  2nd 

second,  C|  will  be  at  (c)  and  the  succeeding  pulse  of  rare- 
faction E|  will  be  just  entering  at  (a).  Neglecting  E|  for 

the  present,  let  us  see  where  C]  will  be  at  the  beginning 
of  the  3rd  second ;  it  will  evidently  have  travelled 
through  {cd)  and  back,  and  in  fact  will  be  at  (c)  again,  but 
moving  upwards.  But  by  the  supposition,  another  pulse 

of  condensation  C2  is  now  entering  the  tube  at  (a)  and 

therefore  moving  downwards.  These  two  equal  pulses  of  YiQ.bl 
condensation  will  meet  at  {h)  and  the  air  particles  here 

being  solicited  by  C|  to  move  upwards,  and  by  0^  to  movo 
downwards,  will  remain  at  rest.  To  return  now  to  the  pulse 
of  rarefaction  E|,  which  at  the  beginning  of  the  2nd  second  was 
entering  the  tube  at  (a) :  at  the  beginning  of  the  Sid  second  it  will 
be  at  (c),  moving  downwards:  at  the  beginning  of  the  4th  second  it 
will  be  again  at  (c),  but  moving  upwards.  But,  by  the  supposition, 

another  pulse  of  rarefaction  R2  i^  ̂ ^'^  entering  at  (a).  These  two 
equal  pulses  will  meet  at  (&),  and  the  air  particles  there  being 
solicited  by  R|  to  move  downwards,  and  by  R^  to  move  upwards, 
will  remain  at  rest.  Thus  the  particles  at  (h)  wdl  be  permanently 

at  rest,  that  is,  (&)  will  be  a  node.  It  will  be  noted,  that  it  is  per- 
fectly allowable  to  consider,  as  we  have  done,  the  pulses  of  con- 

densation and  rarefaction  separately;  for  we  have  already  seen  that 
two  series  of  waves  can  cross,  without  permanently  interfering  with 

one  another.  It  will  be  instructive,  however,  to  consider  the  com- 
bined effects  of  the  pulses  of  condensation  C|  and  rarefaction  R|,  at 

the  end  of   the  2nd  second,  or  what  is  the  same  thing,  at  the 
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commencement  of  tlie  3rd.  At  this  instant,  as  the  studeat  will 

perceive,  both  C|  and  R|  "will  be  at  (c),  C|  moving  up,  and  K|  down. 
Now  the  effect  of  C|  moving  upwards  is  to  swing  the  particles  of 
air  at  this  point  upwards  also,  with  a  certain  amount  of  force ;  and 
the  effect  of  R|  moving  downwards,  is  to  swing  the  same  particles 
upwards  also,  with  the  same  amount  of  force;  C|  and  E|  there- 

fore, combine  their  forces  to  swing  the  air  particles  at  (c)  upwards. 
At  the  expiration  of  another  second  R|  will  be  back  again  at  (c)  but 
moving  now  upwards,  and  C2  will  also  be  at  the  same  point  moving 
downwards.  The  air  particles  at  (c)  will  now  be  swinging  down- 

wards, with  the  combined  forces  of  E,  and  C2.  Thus  it  will  be  seen 
that  (c)  is  a  point  of  maximum  vibration,  that  is,  the  middle  of  a 
ventral  segment. 

The  half  segment  in  (Bj  fig.  56  is  seen  to  be  one-third  as  long  as 
the  half  segment  in  (A) ;  therefore  the  length  of  the  sound  wave 

emitted  by  (B)  must  be  one-third  the  length  of  that  emitted  bj'  (A) ; 
that  is,  the  note  corresponding  to  the  vibrational  form  (B),  has  three 
times  the  vibration  number  of  that  corresponding  to  (A). 

The  next  simplest  way  in  which  the  air  column  in  a  stopped  pipe 
can  vibrate  is  with  three  nodes,  as  represented  in  (C),  fig.  56  ;  the 
next  simplest,  with  four  nodes  (D),  the  next  with  five,  and  so  on. 
As  the  length  of  the  half  segment  in  (0)  is  one-fifth  the  length  of 
that  in  (A),  the  wave  length  of  the  note  corresponding  to  the 
vibrational  form  (C),  must  be  one-fifth  of  that  corresponding  to  (A), 
that  is,  its  vibrational  number  is  five  times  as  great.  Similarly  in 
D,  it  is  seven  times  as  great.  Summing  up,  then,  we  find 
theoretically  that  the  vibration  rates  of  the  tones,  which  can  be  pro- 

duced from  a  stopped  tube,  are  as  the  odd  numbers  1,  3,  5,  7,  &c., 
no  tone  intermediate  in  pitch  between  these,  being  possible.  This 
can  be  easily  verified  experimentally,  by  the  aid  of  an  ordinary 
stopped  organ  pipe.  On  blowing  very  gently,  the  fundamental, 
which  we  may  call  (d|),  is  heard ;  on  gradually  increasing  the  force 
of  the  blast,  a  point  is  reached  at  which  this  fundamental  ceases, 
and  the  (s)  an  octave  and  a  fifth  above,  springs  forth ;  still  further 

increase  the  wind  pressure,  and  this  gives  place  to  the  (n')  two 
octaves  and  a  major  3rd  above  the  fundamental.  By  no  variation 
in  the  blowing  can  any  tone  intermediate  in  pitch  between  these  be 
obtained;  and  the  vibration  numbers  of  these  three  notes  (d|),  (s), 

and  (n')»  are  as  1,  3,  and  5,  and  thus  the  results  obtained  above  are 
corroborated  exi)erimentally. 

As  before  observed,  sounds  thus  successively  obtained  from  a  pipe, 
by  variation  in  the  wind  pressure,  may  be  conveniently  termed 
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harmonics;  the  tenns  "  partials "  and  "overtones"  being  used 
when  they  are  simultaneously  produced.  For  example,  if  the  air 
in  a  stopped  pipe  were  simultaneously  vibrating  in  the  forms  (A), 
(B),  and  (C),  fig.  56,  we  should  obtain  from  it  a  compound  tone  con- 

sisting of  the  first  three  odd  partials,  that  is,  the  1st,  3rd,  and  5th. 
With  regard  to  the  open  organ  pipe,  the  fundamental  is  never 

produced  alone ;  according  to  the  dimensions  and  shape  of  the 
pipe,  it  is  accompanied  by,  from  two  to  five,  or  more  overtones.  As 
a  rule,  the  overtones  are  more  prominent  in  narrow  than  in  wide 
pipes,  and  in  conical,  than  in  cylindrical  ones.  The  shape  of  the 
pipe  has  a  great  influence  on  the  production  of  partials.  The 
conically  narrowed  pipes  found  in  some  organ  stops,  which  have 
their  upper  opening  about  half  the  diameter  of  the  lower,  have  the 
4th,  5th,  and  6th  overtones  proportionally  more  distinct  than  their 
lower  ones.  Stopped  wooden  pipes  of  large  diameter,  when  softly 
blown,  produce  sounds  which  are  nearly  simple.  Such  tones  are 
sweet  and  gentle,  but  tame  and  monotonous.  A  greater  pressure 
of  wind,  or  a  reduction  in  the  diameter  of  the  pipe,  developes  the 
3rd  and  5th  partials. 

The  great  body  of  tone  in  the  organ  is  produced  by  wide  open 

pipes,  forming  the  "principal  stops."  The  tones  they  produce, 
owing  to  the  deficiency  of  upper  partial  tones,  are  somewhat  dull  ; 
they  lack  character,  richness,  and  brilliancy.  Long  before  Helm  • 
holtz  had  shown  that  richness  of  tone  is  due  to  the  occurrence  of 

well-developed  upper  partial  tones,  organ  builders  had  learnt  how 
to  supply  such  tones  artificially,  by  means  of  smaller  pipes,  tuned 
to  the  pitch  of  these  partinls,  forming  what  are  termed  mixture 

stops.  As  an  example  of  such  mixture  stops,  the  "  sesquialtera  " 
may  be  mentioned,  which  originally  consisted  of  three  pipes  to  each 
digital,  the  smaller  two  producing  tones,  a  twelfth  and  a  seventeenth, 
above  the  fundamental  of  the  larger  one,  thus  reinforcing  the  3rd 
and  5th  partials.  The  sesquialtera  is  now  often  made  with  from 
three  to  six  ranks  of  open  metal  pipes.  The  smaller  ranks  are 
usually  discontinued  above  middle  C  as  they  become  too  shrill  and 
prominent,  larger  pipes  sounding  an  octave  lower,  being  sometimes 
substituted. 

In  the  flute,  the  tone  is  produced,  as  in  the  organ  pipe,  by 
directing  a  current  of  air  against  a  thin  edge,  the  edge  in  this  case 
being  the  side  of  a  lateral  aperture  near  the  end  of  the  tube.  In 
the  older  form,  that  of  the  flageolet,  there  is  an  arrangement  very 
similar  to  that  of  the  ordinary  organ  pipe,  and  the  air  is  simply 
blown  in.     Variations  in  pitch  are  effected,  in  the  first  place,  by 
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opening  apertures  in  the  side,  and  thus  practically  altering  the 
length  of  the  pipe ;  and  secondly,  by  so  increasing  the  wind  pressure, 
as  to  bring  out  the  first  harmonic  to  the  exclusion  of  the  funda- 

mental, all  the  tones  thus  springing  up  an  octave.  The  quality  of 
its  tone  is  sweet  but  dull,  owing  to  the  want  of  upper  paiiials. 
When  very  softly  blown,  it  gives  tones  that  are  all  but  simple. 

Eeed  Instruments. 
Two  kinds  of  reed  are  used  in  musical  instruments,  the  free  reed 

and  the  beating:  reed.     Fig.  58  shows  the  construction  of  the  fonner. 

Fio.  68. 

It  consists  of  a  thin  narrow  strip  of  metal  called  a  "tongue" 
fastened  by  one  end  to  a  brass  plate,  the  rest  of  the  tongue  being 
free.  Immediately  below  the  tongue,  there  is  an  aperture  in  the 
brass  plate,  of  the  same  shape,  and  very  slightly  larger  than  the 
tongue  itself.  Thus  the  tongue  forms  the  door  of  the  aperture, 
capable  of  swinging  backwards  and  forwards  in  it.  If  a  current  of 
air  be  driven  upon  the  free  end  of  the  tongue,  the  latter  is  set 
vibrating  to  and  fro  in  the  aperture  between  its  limiting  positions 
A  and  B,  fig.  59.     When  in  the  position  A,  the  current  of  wind 

Fig.  59. 

passes  through,  but  when  the  tongue  reaches  the  position  B,  the 
current  is  suddenly  shut  off ;  only  when  the  tongue  resumes  the 
position  A,  can  the  air  again  pass.  As  the  vibrations  of  the  tongue 
are  periodic,  a  regular  succession  of  air  pulses  are  thus  produced, 
giving  rise  to  a  musical  sound,  precisely  as  in  the  case  of  the  Syren. 

The  action  of  the  beating  reed  is  similar  to  that  of  the  free  reed ; 
in  fact,  the  beating  reed  only  differs  from  the  free  reed,  in  having 
its  tongue  slightly  larger  than  the  aperture,  so  that  it  beats  against 
the  plate,  in  closing  the  aperture,  instead  of  passing  into  it. 

The  reed  is  used  in  its  simplest  form  in  the  harmonium,  American 
organ,  and  concertina.     In  the  harmonium  and  concertina,  the 
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current  of  air  is  forced  through  the  reeds  by  means  of  a  bellows.  In 
the  American  organ,  the  bellows  so  act,  as  to  form  a  partial  vacuum 
below  the  reeds,  the  external  air  being  thus  drawn  through  them. 

The  pitch  of  the  sounds,  obtained  from  such  reeds  evidently 
depends  upon  the  vibration  rate  of  the  reed  itself.  This  again 

depends  upon  the  size  and  thickness  of  the  reed,  and  the  elasticity 
of  the  material  of  which  it  is  composed.  Harmonium  reeds  are 

usually  sharpened  by  gently  filing  or  scraping  the  free  end,  and 
flattened  by  applying  the  same  operation  to  the  part  of  the  tongue 
near  the  fixed  end.  A  rise  of  temperature,  diminishes  the  rate  of 

vibration,  as  the  tongue  expands  and  its  elasticity  is  diminished. 
The  pitch  is  also  somewhat  affected  by  the  force  of  the  wind. 

The  tones  obtained  from  reeds  such  as  the  above,  are  very  rich  in 
overtones.  All  the  series  of  partials  up  to  the  sixteenth,  or  even 
higher,  may  be  distinctly  recognised  in  any  of  the  lower  notes  of 
the  harmonium;  in  fact,  the  undue  prominence  of  the  higher 
partials  is  one  of  the  drawbacks  of  this  instrument. 

In  order  to  understand  this  wealth  of  partials  in  reed  tones,  we 
must  turn  back  to  Chap.  YIII.  We  saw  there,  that  Fourier  has 

proved  mathematically,  that  every  form  of  wave  may  be  analysed 
into  a  number  of  simple  waves,  whose  lengths  are  inversely  as  the 
numbers  1,  2,  3,  4,  5,  «S:c.  Now  it  is  plain,  that  the  more  abrupt  or 
discontinuous  the  compound  wave,  the  greater  will  be  the  number 

of  its  constituent  simple  waves.  The  compound  sound  wave 
resulting  from  the  vibration  of  a  reed,  is  highly  discontinuous ; 
since  the  individual  pulses  must  be  separated  by  complete  pauses 

during  the  closing  of  the  apertures.  Hence  the  number  of  its  con- 
stituent simple  waves  will  be  correspondingly  large,  that  is,  the 

compound  tone  produced  by  a  vibrating  reed  is  made  up  of  a  very 
large  number  of  partial  tones.  The  harder  and  more  unyielding 
the  tongue,  and  the  more  perfectly  it  fits  its  aperture,  the 

more  discontinuous  will  be  the  pulses,  and  consequently  the  more 
intense  and  numerous  the  overtones. 

The  compound  tone  of  the  reed,  being  thus  overburdened  by  the 

intensities  of  its  upper  partials,  it  becomes  an  advantage  to  soften 
these  latter,  or  what  comes  to  the  same  thing,  to  strengthen  the 
fundamental,  without  at  the  same  time  strengthening  the  overtones. 
This  can  be  done,  by  placing  the  reed  at  the  mouth  of  an  open  pipe, 
the  fundamental  tone  of  which  is  of  the  same  pitch  as  the 

fundamental  tone  of  the  reed.  This  latter  tone  will  then  be  greatly 
reinforced  by  the  resonance  of  the  pipe.     The  other  partial  tones  of 
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the  reed  will  also  be  strengthened,  but  to  a  much  less  extent; 
for  the  force  necessary  to  produce  segmental  vibration,  increases 

rapidly  as  the  number  of  segments  increases.  The  higher  partials 
of  the  reed  are  therefore  practically  unsupported  by  the  associated 

pipe.  It  is  evident  that  the  pipe  associated  with  a  reed,  may  be 
selected  to  resound  to  one  of  the  overtones  of  the  reed,  instead  of 
o  the  fundamental,  the  resulting  tone  being  in  this  case  of  quite 

different  quality  to  the  above.  The  form  of  the  pipe  may  also  vary, 
producing  other  changes  in  the  quality  of  tone  produced.  It  is 
thus  that  the  varieties  of  reed  pipes  in  the  organ  are  obtained. 

Fig.  60  shows  how  the  reed  is  inserted  iu 

the  organ  pipe.  V  is  the  socket  in  which 
the  lower  end  of  the  pipe  is  fixed,  I  is  the 

beating  reed,  which  is  tuned  by  increasing 
or  diminishing  its  effective  length,  by 

means  of  the  movable  wire  d,  sliding  in  the 
block,  8. 

The  reed  instniments  in  use  in  the 

orchestra,  may  be  classified  into  the  wood 
wind  instruments,  which  have  wooden  reeds, 
and  the  brass  wind  instruments,  which  have 

cupped  mouth-pieces.  The  chief  instru- 
ments of  the  former  class  are  the  Clarinet, 

the  Hautbois  or  Oboe,  and  the  Bassoon. 

In  these  instruments  the  proper  tones  of 
the  reeds  themselves  are  not  used  at  all, 

being  too  high  and  of  a  shrill  or  screaming 

quality;  the  tones  employed  are  those  de- 
pending on  the  length  of  the  column  of  air 

in  the  tube,  as  detenniued  by  the  opening 
or  closing  of  the  apertures.  The  vibration 

of  the  air  column  thus  controls  the  yielding 
reed,  which  is  compelled  to  vibrate  in 

sympathy  with  it. 
The  Clarionet  or  Clarinet  has  a  cylindrical 

tube  terminating  at  one  end  in  a  bell.  At 
the  other  end  is  the  mouth  piece,  which  is 

of  a  conical  shape,  and  flattened  at  one  side 
so  as  to  form  a  kind  of  table  for  the  reed, 

the  opposite  side  being  thinned  to  a  chisel 
edge.  The  bore  of  the  instrument  passes 

through  the  table  just  mentioned,    which Fio.  60. 
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moreover  is  not  quite  flattened,  but  slightly  curved  away  from 
the  reed,  so  as  to  leave  a  thin  gap  between  the  end  of  the  reed 
and  the  mouth  piece.  The  Clarinet  has  thus  only  a  single  reed,  and 
that  a  beating  one. 

The  tube  is  pierced  with  eighteen  holes,  half  of  which  are  closed 
by  the  fingers,  and  half  by  keys.  The  lowest  note  is  produced  by 

closing  all  the  apertures  and  blowing  gently.  By  opening  succes- 
sively the  eighteen  apertures,  eighteen  other  notes  may  be  obtained 

at  intervals  of  a  semitone  ;  and  thus  the  lower  scale,  of  one-and-a- 
half  octaves,  is  obtained.  By  increase  of  wind  pressure,  or  by 
opening  an  aperture  at  the  back  of  the  tube,  the  pitch  of  the  tube 
is  raised  a  twelfth ;  in  fact  the  instrument  acts  like  a  stopped  tube, 

increased  wind  pressure  bringing  out,  not  the  second,  but  the  third 
of  the  ordinary  harmonic  series. 

The  quality  of  tone  on  the  Clarinet  is  very  characteristic,  and  is 
due  to  the  fact  that  only  the  odd  partials,  1,  3,  5,  7,  &c.,  are  present 
in  its  tones;  just  as  in  the  case  of  stopj)ed  organ  pipes.  In  fact  the 
Clarinet  must  be  considered  as  such  a  pipe,  stopped  at  the  end 
where  the  reed  is  placed ;  for  it  is  here  that  the  greatest  alternations 

of  pressure  occur ;  that  is,  as  we  have  seen  above,  this  point  must 
be  a  node. 

The  Oboe  and  Bassoon  have  conical  tubes  expanding  into  bells. 

The  reed  in  each  is  double  and  formed  of  two  thin  broad  spatula- 
shaped  plates  of  cane  in  close  approximation  to  one  another. 
Variations  in  pitch  are  obtained  as  in  the  flute,  by  varying  the 

effective  length  of  the  tube,  by  means  of  apertures  closed  by  the 
fingers  or  keys.  Like  the  flute  also,  the  first  harmonic  is  the 
octave,  so  that  increase  of  wind  pressure  raises  the  pitch  by  that 
interval.  The  partials  present  in  the  tones  of  these  instruments, 
are  those  of  the  complete  series,  1,  2,  3,  4,  5,  &c. 

In  instruments  with  cupped  mouth  pieces,  the  lips  of  the  player, 
which  form  the  reed,  are  capable  of  vibrating  at  very  different 
rates,  according  to  their  tension,  form,  &c.  A  very  simple  type  of 
this  class  of  instrument  may  be  obtained,  by  placing  a  common 
glass  funnel  into  [one  end  of  a  piece  of  glass  tubing,  a  few  feet 
long,  and  half  an  inch  or  so  in  diameter.  The  tones,  which  can  be 

obtained  from  such  a  tube,  by  varying  the  tension  and  form  of  the 
lips  and  the  force  of  the  wind,  are  those  of  the  complete  partial 
series;  the  lowest  ones  are,  however,  very  difficult  to  obtain.  Thus 
no  note  can  be  produced  on  such  an  instrument,  but  such  as  belong 
to  the  series  of  partials,  or  harmonic  scale,  as  it  is  sometimes  termed. 
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All  instruments  with  cupped  moutli-pieces  are  constiiicted  on  the 
same  principle  as  this  primitive  instrument ;  that  is,  they  are  tubes 

"without  lateral  apertures,  the  notes  producible  upon  them  being 
the  harmonics  of  the  tube.  Now,  as  will  be  seen  from  the  table  on 
page  72,  there  are  various  gaps  in  this  harmonic  scale,  as  compared 
with  the  diatonic  and  chromatic  scale,  and  accordingly  it  will  be 
found  that  the  most  important  departures  of  brass  instruments  from 
the  rude  type  selected  above,  have  been  made  for  the  purpose  of 
supplying  these  missing  notes. 

The  chief  instruments  of  this  class  are  the  French  Horn,  Trum- 
pet, and  Trombone.  The  French  Horn  consists  of  a  conical 

twisted  tube  of  great  length,  expanding  at  the  larger  end  into  a  bell. 

The  fundamental,  which  is  a  verj'  deep  tone,  is  not  used.  As  will 
be  seen  on  reference  to  the  table  on  page  72,  the  higher  harmonics 

(for  example,  those  from  the  seventh  upwards)  form  an  almost  un- 
broken scale.  To  supply  the  missing  notes,  the  hand  is  thrust  into 

the  bell  to  a  greater  or  less  extent,  thus  lowering  the  pitch  of  the 
note  which  is  being  produced  at  the  time.  These  instruments  are 
also  frequently  supplied  with  keys,  which  vary  the  effective  length 
of  the  tube,  and  thus  produce  the  missing  tones,  but  at  some 
expense  of  the  quality  of  tone. 

The  Tnmipet  supplies  the  notes  which  are  wanting  to  complete 
its  scale  in  a  much  more  effective  manner.  An  U  shaped  portion 
of  the  tube  is  made  to  slide  with  gentle  friction,  upon  the  body  of 
the  instrument,  so  that  the  tube  can  thus  be  lengthened  or  shortened, 
within  certain  limits  by  the  player. 

The  Trombone  is  simply  a  bass  trumpet,  and  in  principle  is  the 
same  as  the  above.  In  these  brass  instruments,  the  tension,  &c., 
of  the  lips  only  determines  which  of  the  proper  tones  shall  speak, 
the  actual  pitch  of  the  tone  being  almost  entirely  independent  of 
the  tension  itself 

The  vocal  organ,  or  larynx,  is  essentially  a  reed  instrument. 
The  reed  itself  is  a  double  one,  and  consists  of  two  elastic  bands, 
called  the  Vocal  Chords,  or  Ligaments,  which  stretch  from  front  to 
back  across  the  larynx.  When  they  are  not  in  action,  these 
ligaments  are  separated  by  a  considerable  aperture.  By  means  of 
muscles  inserted  in  the  cartilages  to  which  the  vocal  ligaments  are 
attached,  these  latter  can  be  brought  close  together  with  their  edges 
parallel.  The  air  from  the  limgs  acting  upon  them,  while  in  this 
position,  sets  them  in  vibration,  in  the  same  way  as  the  air  from  a 
bellows  operates  upon  a  reed.     Yariations  in  pitch  are  effected  by 
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varying  the  tension  of  the  vocal  ligaments.  This  is  effected  by  the 
contraction  of  certain  muscles,  which  act  on  the  cartilages  to  which 
the  ligaments  are  attached  in  such  a  way  as  to  stretch  these  latter 
to  a  greater  or  less  extent.  The  density  of  the  vocal  ligaments  also 

seems  to  be  variable.  According  to  Helmholtz  "  much  soft  watery 
inelastic  tissue  lies  underneath  the  proper  elastic  fibres  and 
muscular  fibres  of  the  vocal  chords,  and  in  the  breast  voice  this 
probably  acts  to  weight  them  and  retard  their  vibrations.  The  head 
voice  is  probably  produced  by  drawing  aside  the  mucous  coat  below 
the  chords,  thus  lendering  the  edge  of  the  chords  sharper  and  the 

weight  of  the  vib]  ating  part  less,  while  the  elasticity  is  unaltered." 

As  in  other  reed  instruments,  the  tones  of  the  human  voice  are 
very  rich  in  overtones.  In  a  sonorous  bass  voice,  it  is  easy  to 
detect  the  first  seven  or  eight,  and  by  the  aid  of  resonators  even 

more.  "When  a  body  of  voices  are  heard  together,  close  at  hand, 
smging  forte,  the  shrill  overtones  are  only  too  prominent.  These 
overtones  are  very  largely  modified  in  intensity  by  the  size  and 
shape  of  the  nasal  cavity  and  the  pharynx,  also  by  the  varying  size 
and  shape  of  the  mouth  and  position  of  the  tongue.  Hence,  when 
the  vocal  ligaments  have  originated  a  compound  tone  rich  in 

pai-tials,  the  varying  features  just  mentioned,  may  reinforce  now 
one  set  of  partials,  and  now  another,  in  very  many  different  ways, 
thus  producing  the  endless  variety  of  qualities  found  in  the  human 
voice. 

The  following  is  a  very  instructive  experiment  in  connection  with 
this  subject,  showing  how  the  reinforcement  of  particular  partials 
by  the  resonance  of  the  mouth  cavity  modifies  the  quality.  Strike 
an  ordinary  C  tuning-fork,  and  hold  the  ends  of  the  vibrating 
prongs  close  to  the  open  mouth,  keeping  the  latter  in  the  position 

required  for  singing  "ah."  Notice  how  the  quality  of  the  fork  is 
affected.  Now  do  the  same  again,  but  put  the  mouth  in  the 

position  required  for  sounding  *'oo."  Observe  the  change  of 
quality.  A  looking  glass  will  be  required  in  order  to  see  that  the 
fork  is  in  the  right  position.  Once  more  repeat  the  experiment ; 
but  this  time,  while  the  vibrating  fork  is  held  in  position,  move  the 

mouth  from  the  position  *'ah"  to  the  "oo"  position,  at  first 
gradually,  and  then  rapidly;  the  corresponding  change  in  the 
quality  of  the  tone  of  the  fork  is  very  striking.  For  a  detailed 
account  of  the  Larynx  and  of  Voice  production,  the  student  is 
referred  to  Behnke's  "  Mechanism  of  the  Human  Voice." 
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SUMkARY. 

To  find  approximately  the  vibration  number  of  any  given  flue- 
pipe ;  divide  the  velocity  of  soimd  by  twice  the  length  of  the  pipe 
for  open,  and  by  four  times  its  length  for  stopped  pipes. 

The  pitch  of  an  open  pipe  is  not  exactly  the  same  as  that  of  a 
stopped  pipe  of  half  its  length. 

The  pitch  of  a  flue  pipe  is  sharpened  by  a  rise  of  temperature. 

Wooden  pipes  sharpen  more  than  metal  ones  for  the  same  increase 
of  temperature. 

Nodes  are  produced  in  flue  pipes  by  the  meeting  of  two  rarefactions 
or  of  two  condensations  travelling  in  opposite  directions :  con- 

sequently it  is  at  the  nodes  that  the  greatest  variations  in  density 
occur. 

The  open  end  of  a  pipe  is  always  an  antinode. 

„     closed     ,,         ̂ ,         ,,        ,,     anode. 
When  the  air  column  in  an  open  pipe  vibrates  with  one  node  only, 

that  is  as  a  whole,  the  fundamental  (say  d|)  is  produced ;  when  with 
two  nodes  only,  that  is  in  two  halves,  the  1st  Harmonic  (d) ;  when 
with  three  nodes  only,  the  2nd  Harmonic  (s) ;  and  so  on. 
When  the  air  column  in  a  stopped  pipe  vibrates  with  one  node 

only,  that  is  as  a  whole,  it  gives  the  fundamental  (say  d|);  when 
with  two  nodes,  that  is  in  three  thirds,  its  1st  Harmonic  (s) ;  when 

with  three  nodes,  its  2nd  Harmonic  (n') ;  and  so.  on. 
The  tones  produced  by  flue  pipes  are  compound,  because  of  the 

fact,  that  the  air  column  vibrates  simultaneously,  as  a  whole  and 

in  aliquot  parts,  each  part  producing  an  overtone  of  a  pitch  cor- 
responding to  its  length. 

Stopped  pipes  only  give  the  partials  of  the  odd  series,  1,  3,  5,  &c^ 
The  flute  is  a  flue  pipe  of  variable  length. 

The  pitch  of  a  reed  is  lowered  by  a  rise  of  temperature. 
The  sounds  produced  by  reeds  are  rich  in  overtones. 

The  fundamental  tone  of  a  reed-clang  may  be  strengthened 
relatively  to  its  overtones,  by  placing  over  the  reed,  a  pipe  which  is 
in  unison  with  that  fundamental. 

The  Clarinet,  Oboe,  and  Bassoon  are  stopped  pipes,  in  which  the 
pipe  governs  the  reed,  that  is  to  say,  the  tones  produced  depend  on 
the  varying  length  of   the  pipe,   and  not  upon  the  reed.      The 
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Clarinet  is  a  cylindrical  stopped  pipe,  and  therefore  its  tones  consist 
of  only  the  odd  partials. 

The  OJ)oe  and  Bassoon  are  conical  stopped  pipes,  and  their  partials 
follow  the  ordinary  series. 

In  instruments,  with  cupped  mouth  pieces,  such  as  the  French 

Ilom,  Trumpet,  &c.,  the  lips  of  the  player  form  the  reed.  Changes 
of  pitch  were  originally  brought  about,  by  successively  developing 
their  different  harmonics.  Their  partials  belong  to  the  complete 
series. 

The  Human  Voice  is  essentially  a  reed  instrument  (the  Vocal 
Ligaments  or  Chords)  with  a  resonator  (the  Mouth,  Pharynx,  and 

Nasal  Cavities)  attached.  The  Vocal  Ligaments  originate  a  com- 
pound tone,  rich  in  partials,  the  relative  intensities  of  which  are 

profoundly  modified  by  the  ever  varying  resonator,  thus  producing 
the  almost  infinite  variety  in  quality  of  tone,  which  is  characteristic 
of  the  Human  Voice. 
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CHAPTER    XI, 

On  the  Yibrations  of  Eods,  Plates,  &o 

As  the  musical  instruments  treated  of  in  tke  present  chapter  are 
of  comparatively  less  importance  than  those  already  studied,  the 
principles  which  they  involve  will  be  more  briefly  touched  on. 
We  shall  first  consider  the 

Vibrations  of  Eods  or  Bars. 

A  Eod  is  capable  of  vibrating  in  three  ways  (the  last  however 
being  of  little  importance,  musically  speaking),  viz. 

1.  Longitudinally. 
2.  Laterally. 
3.  Torsionally. 

1.  Longitudinal  vibrations  again  may  be  classified  according  as 
the  rod  is 

(a)    Fixed  at  both  ends. 
(6)    Fixed  at  one  end  only. 
(c)  Free  at  both  ends, 

(a)  The  Longitudinal  vibrations  of  a  rod  or  wire,  fixed  at  both 
ends,  may  be  studied  on  the  monochord,  by  passing  briskly  along 
the  wire,  a  cloth,  which  has  been  dusted  with  powdered  resin.  The 
sound  produced  is  much  higher  in  pitch  than  that  obtained  by 
causing  the  wire  to  vibrate  transversely.  On  stopping  the  wire  at 
the  centre,  and  rubbing  one  of  the  halves,  the  upper  octave  of 
the  sound  first  heard,  is  emitted.  When  the  wire  is  stopped  at  one 
third  its  length,  and  this  third  excited,  the  fifth  above  the  last  is 
heard ;  and  so  on.  Thus,  as  in  the  case  of  transverse  vibrations, 
the  vibration  number  varies  inversely  as  the  length  of  the  wire. 
On  altering  the  tension,  the  pitch  will  not  be  found  to  have 
varied  ;    that  is,  the  pitch  is  independent  of  the  tension. 
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The  longitudinal  vibrations  of  a  wire  fixed  at  both  ends,  some- 
what resemble  those  that  take  place  in  an  open  organ  pipe.  In 

both  cases,  the  time  of  a  complete  vibration  is  the  time  taken  by  a 
pulse  to  move  through  the  length  of  the  wire  or  pipe,  and  back  again. 
In  the  case  of  the  latter,  we  have  seen,  that  the  vibration  number 
of  the  note  produced  by  any  given  pipe,  may  be  ascertained  by 
dividing  the  velocity  of  sound  in  air,  by  twice  the  length  of  the 
pipe.  Conversely,  if  we  know  the  vibration  number  of  the  pipe, 
we  can  ascertain  the  velocity  of  sound  in  air,  by  multipijring  this 
number  by  twice  the  length  of  the  pipe.  This  principle  maj-  be 
employed  to  determine  the  velocity  of  sound  in  other  gases.  Thus, 
fill  and  blow  the  pipe  with  hydrogen,  instead  of  air,  and  ascertain 
the  pitch  of  the  note  produced :  its  vibration  number  multiplied 
by  twice  the  length  of  the  pipe,  will  give  the  velocity  of 
sound  in  hydrogen.  Or  we  may  proceed  thus  ;  blow  one  pipe  with 
air,  and  another  with  hydrogen,  the  latter  pipe  being  furnished 
with  telescopic  sliders,  so  that  its  length  can  be  altered  at  pleasure. 
Now  while  both  pipes  are  sounding,  gradually  lengthen  the  pipe, 
till  both  are  in  unison.  When  this  is  the  case,  let  I  denote  the 
length  of  the  air  sounding  pipe,  and  Z|  the  length  of  the  other : 
then  if  V  be  the  velocity  of  sound  in  air,  and  V^  its  velocity  in 

hydrogen,  it  is  evident  that — 
F,    _   2, 

T   "    1 
from  which  F,  may  be  readily  calculated.  In  this  way,  the  velocity 
of  sound  in  the  various  gases  has  been  ascertained. 
Now  from  what  has  been  said  above,  it  will  be  seen,  that  this 

same  method  may  be  applied,  in  order  to  ascertain  the  velocity  of 
sound  in  solids.  For  example,  suppose  we  wish  to  ascertain  the 
velocity  of  sound  in  iron.  Stretch  some  twenty  feet  of  stout  iron 
wire  between  two  fixed  points,  one  of  which  is  movable :  a  vice, 
the  jaws  of  which  are  lined  with  lead  answers  very  well.  Eub  the 
wire  with  a  resined  piece  of  leather,  and  gradually  shorten  it  till 
the  sound  produced  is  in  unison  with  a  C  tuning-fork,  the  vibration 
number  of  which  is,  say,  512.  When  the  unison  point  is  reached, 
measure  the  length  of  wire  :  say  it  is  16^  feet.  Then  the  time  of 
a  complete  vibration  is  the  time  required  for  the  pulse  to  run 
through  2  X  16|  =  33  feet  of  the  wire.  But  there  are  512 
vibrations  or  pulses  per  second :  therefore  sound  travels  along  the 
iron  wire  at  the  rate  of  512  X  33  =  16,896  feet  in  a  second. 

Generally,  let  I  denote  the  len»th,  in  feet,  of  a  wire  or  rod  fixed  at 
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both  ends,  and  n  the  vibration  number  of  the  note  it  emits  when 
vibrating  longitudinally  ;  then,  if  F  denote  the  velocity  of  sound  in 
the  substance  of  which  the  rod  or  wire  is  composed, 

V  =  2ln. 

The  overtones  of  a  wire  fixed  at  both  ends  follow  the  ordinary 
series,  1,  2,  3,  4,  5,  &c.,  the  wire  vibrating  in  two  segments,  with  a 
node  in  the  centre  to  produce  the  first  overtone,  and  so  on. 

(&)  The  longitudinal  vibrations  of  rods  fixed  at  one  end,  present 
considerable  analogy  with  those  in  stopped  organ  pipes.  Thus  the 
vibration  number  varies  inversely  as  the  length  of  the  rod,  as  may 
be  easily  shown  by  fixing  varying  lengths  of  rod  in  a  vice,  and 
exciting  them  with  a  resined  cloth.  Again,  the  time  required  for  a 
complete  vibration,  is  the  time  during  which  a  pulse  makes  two 
complete  journeys  up  and  down  the  rod.  Thus,  these  vibrations 
may  be  used  to  ascertain  the  velocity  of  sound  in  any  substance, 
the  method  of  proceeding  being  similar  to  that  explained  above,  but 
the  formula  will  be 

V  —  iln. 

The  partials  obtainable  from  these  rods,  are,  like  those  of  a 
stopped  organ  pipe,  the  odd  partials  of  the  complete  series,  1,  3,  5, 
7,  &c.  ;  the  first  overtone  requiring  a  node,  at  a  point  one-third  the 
length  of  the  rod  from  the  free  end ;  the  second  at  one-fifth  of  the 
length,  and  so  on. 

The  only  musical  instrument  in  which  this  kind  of  rod  vibration 

is  utilized  is  Marloye's  harp.  It  consists  of  a  series  of  wooden  rods 
of  varying  lengths,  vertically  fixed  on  a  sound-board  below.  The 
rods  are  excited,  by  rubbing  up  and  down  with  the  resined  fingers. 

(c)  In  rods  or  tubes  free  at  both  ends,  the  simplest  longitudinal 
vibrations  are  set  up,  when  the  tube  is  clasped  or  clamped  at  the 
centre,  and  excited  by  longitudinally  rubbing  either  half  :  the 
simplest  form  of  vibration  is  therefore,  with  one  node  in  the  centre. 
Hods  so  treated  are  analogous  with  open  organ  pipes.  For  example, 
the  vibration  number  varies  inversely  as  the  length  of  the  rod  ;  and 
the  time  of  a  complete  vibration  is  the  same  as  that  required  for  a 
pulse  to  run  to  and  fro  over  the  rod ;  so  that  here  again  the  velocity 
of  sound  in  the  substance  of  which  the  rod  is  composed,  may  be 

ascertained  by  multiplj'ing  the  vibration  number  of  the  note 
produced,  by  twice  the  length  of  the  rod. 

As  just  stated,  the  simplest  form  in  which  these  rods  can  vibrate, 
is  with  one  node  in  the  centre  ;  the  next  simplest,  as  in  the  case  of 
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the  open  organ  pipe,  is  -with  two  nodes ;  the  next,  with  three,  and 
so  on;  the  partials  produced  being  those  of  the  complete  series, 
1,  2,  3,  4,  5,  &c. 

2.    Coming  now  to  the  lateral  vibrations  of  rods,  we  find  these 

may  also  be  classified  according  as  the  rods  are, — 
(a)  Fixed  at  both  ends, 
{b)  Fixed  at  one  end  only, 
(c)  Free  at  both  ends, 

(a)  A  rod  fixed  at  both  ends,  vibrates  laterally  in  exactly  the 
eame  manner  as  a  string ;  that  is,  it  may  vibrate  as  a  whole,  form- 

ing one  vential  segment ;  or  with  a  node  in  the  centre,  and  two 
ventral  segments  ;  or,  with  two  nodes,  and  three  ventral  segments, 
&c.  The  relative  vibration  rates  are,  however,  very  different,  as 
may  be  seen  from  the  following  table  : — 

segments     1,  2,  3,  4. 
vibration  rates    9      :     25      :     49      :     81 

or  32     :      52     :      7^     :      92. 

(&)  In  laterally  vibrating  rods  fixed  at  one  end,  the  vibration 
number  varies  inversely  as  the  square  of  the  length.  Chladni 
endeavoured  to  utilize  this  fact,  in  ascertaining  the  vibration 
number  of  a  musical  sound.  He  first  obtained  a  strip  of  metal  of  such 
a  length,  that  its  vibrations  were  slow  enough  to  be  counted. 
Suppose,  for  example,  a  strip  is  taken,  36  inches  long,  and  that  it 
vibrates  once  in  a  second.  Reducing  it  to  one-third  that  length, 
according  to  the  above  law,  it  will  vibrate  nine  times  per  second. 
Reducing  it  to  six  inches,  it  will  make  36  vibrations  per  second;  to 
three  inches,  144  vibrations;  to  one  inch,  1,296  vibrations.  By  a 
little  calculation,  it  is  easy  to  find  the  vibration  number  of  any 
intermediate  length. 

The  relative  rates  of  vibration  of  the  partial  tones  of  such  rods, 
are  very  complex ;  the  second  partial  is  more  than  two  octaves 
above  the  fundamental,  and  the  others  are  correspondingly  distant 
from  one  another.  Examples  of  instruments,  in  which  these 
lateral  vibrations  of  rods  fixed  at  one  end  are  utilized,  may  be 
found  in  the  musical  box  and  the  bell  piano. 

(c)  The  simplest  mode  in  which  a  rod  free  at  both  ends  can 
vibrate  laterally,  may  be  experimentally  observed  by  grasping  a 
lath  some  six  feet  long,  with  both  hands,  at  about  one  foot  from 
either  end,  and  striking  or  shaking  it  in  the  centre.  It  will  be 
found  that  there  are  two  nodes,  as  shown  in  fig.  61,  A.     The  next 
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lia. 

Bimplest  is  with  three  nodes,  fig.  61,  B.     The  tones,  corresponding 
to  these  divisions,  rise  very  rapidly  in  pitch,  thus  : 

Number  of  nodes  2,        3,        4,        5,        6,        7. 
Approximate  vib.  rates   9    :   25    :   49    :   81  :  121  :  169. 

or  3'-^   :    5'^   :    T^    :  92  :  112  :  132. 

The  Harmonicon  is  an  example  of  an  instrument,  in  which  the 
lateral  vibrations  of  rods  free  at  both  ends  are  utilized ;  but  the 

most  important  member  of  this  class  is  the  Tuning-fork.  This  in- 
strument, generally  constructed  of  steel,  may  be  considered  as 

derived  from  a  straight  bar,  such  as  that  depicted  at  the  lower  part 
of  fig.  62,  by  folding  it  in  two,  at  the  middle.     The  tone  of  the  bent 

N N 

Fig.  62. 
Fio.  63. 

bar  will  be  somewhat  flatter  than  the  original  straight  one,  and  tho 
nodes,  which  in  the  straight  bar  were  near  the  two  ends,  will  have 
approached  very  close  together  in  the  bent  one.  Fig.  62  shows  by 
the  short  marks,  this  gradual  approach  of  the  nodes,  as  the  bar  is 
more  and  more  bent;  and  fig.  63,  by  its  thin  and  dotted  lines, 
represents  the  two  extreme  positions  of  the  fork,  while  sounding  its 
fundamental.  When  the  prongs  are  at  their  extreme  outward 
position  h  m,  the  portion  between  the  nodes  p  and  q  rises ;  when 
thev  are  closest  together,  at  nf,  this  same  portion  descends.     Thus 

i 
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while  the  prongs  move  horizontally  the  portion  between  p  and  q 
vibrates  vertically.  To  this  portion  there  is  usually  welded  or 

screwed,  an  elongated  piece  of  steel,  which  shares  this  vertical 
motion,  and  does  duty  as  a  handle.  When  this  handle  is  placed 

upon  a  sound-board,  its  vertical  vibrations  are  communicated  to  it ; 
a  larger  body  of  air  is  set  in  motion,  and  thus  the  sound  of  the  fork 

augmented.  A  tuning-fork  does  not  divide  like  a  straight  bar  into 
four  vibrating  segments  with  three  nodes;  its  second  complete  form 
of  vibration,  which  corresponds  to  the  first  overtone,  is  with  four 

nodes,  two  at  the  bottom  and  one  on  each  prong.  In  some  forks, 
examined  by  Helmholtz,  the  relative  rates  of  the  fundamental  and 

first  overtone,  varied  from  1  :  5'8  to  1  :  6'6.  The  overtones  of 
tuning-forks  are  consequently  very  distant  from  the  fundamental 
and  from  one  another;  thejfirst  overtone,  as  we  see  from  the  above, 

being  more  than  two  octaves  above  the  fundamental.  The  rates  of 

vibration  of  the  whole  series  of  overtones,  starting  with  the  first 
overtone,  are  approximately  as  9,  25,  49,  81,  &c.,  that  is,  as  the 
squares  of  the  odd  numbers,  3,  5,  7,  9,  &c. 

These  high  overtones  are  very  evanescent,  and  soon  leave  the 
fundamental  tone  pure  and  simple.  This  is  especially  the  case,  as 
already  observed,  when  the  fork  is  mounted  on  a  resonance 
chamber,  tuned  to  its  fundamental.  The  fork  should  either  be 

struck  with  a  soft  hammer,  or  carefully  bowed.  Striking  with  a 
hard  metallic  substance,  favours  the  production  of  the  higher 
partials,  for  the  reason  given  in  the  case  of  pianoforte  strings. 

Large  forks,  when  too  rapidly  bowed,  produce  very  powerful  over- 
tones. The  best  method  of  keeping  tuning-forks  in  continuous 

vibration,  is  by  means  of  electro-magnets,  as  already  described  in 
Chap.  YIII. 

The  pitch  of  a  tuning-fork  is  only  very  slightly  affected  by  heat. 
The  effect  of  increase  of  temperature  on  a  fork,  is  to  slightly  flatten 
it;  for  the  fork  itself  expands,  and  its  modulus  of  elasticity  is 
lowered  on  heating ;  both  of  these  causes  combining  to  lower  the 

pitch.  The  variation  with  temperature  is  only  about  one  vibration 
in  21,000,  for  each  degree  Fahrenheit.  Forks  are  also  little  affected 
by  ill  usage.  A  slight  amount  of  rust  is  imperceptible  in  its 
influence  on  pitch ;  and  with  a  very  large  amount,  such  as  could 
only  occur  through  great  carelessness,  the  eiTor  is  never  likely  to 
exceed  1  in  250.  Eust  about  the  bend  has  a  much  greater  influence 

over  the  pitch,  than  at  the  ends.  Tuning-forks  are  perhaps  most 
injured,  by  wrenching  or  twisting  of  the  prongs,  such  as  might 
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in  and occur  through  a  fall,  or  by  screwing  or  unscrewing  them  i 
out  of  resonance  boxes. 

Vibrations  of  Plates. 

Though  not  of  much  importance  in  reference  to  music,  these 
vibrations  are  of  much  interest,  on  account  of  the  beautiful  method 
by  which  their  forms  are  analysed.  The  plates  usually  employed 
are  constructed  of  either  metal  or  glass,  the  metal  being  usually 
brass.  Any  regular  shape  may  be  adopted,  the  most  common  being 
the  circular  and  square  forms.  The  plate  is  firmly  fastened  at  the 
centre  or  some  other  point,  to  a  stand  ;  and  the  vibrations  are  best 
set  up,  by  bowing  the  edge  of  the  plate  with  a  double-bass  bow. 
The  rate  of  vibration  of  a  circular  plate  is  directly  proportional  to 
the  thickness,  and  inversely  proportional  to  the  square  of  the 
diameter. 

A  node  can  be  formed  at  any  desired  point,  by  touching  that 
point  firmly,  while  bowing.  By  thus  successively  touching  various 
parts  of  the  plate,  a  variety  of  notes  of  different  pitches,  corre- 

sponding to  its  overtones,  may  be  obtained,  the  plate  vibrating 

differently  for  each  note.   About  100  years  ago,  Chladni  discovered 
the  method  of  rendering  these  different  vibration  forms  visible,  by 
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strewing  sand 
When 

lightly  and  evenly  over  the  plate  before  bowing, 
a  plate,  thus  treated,  vibrates,  the  sand  being  violently 

agitated  over  the  vibrating  segments,  is  rapidly  jerked  away  from 
these  parts,  and  arranges  itself  along  the  nodal  lines  (fig.  64). 

The  simplest  way  in  which  a  circular  plate  can  vibrate,  is  in  four 

segments  (fig.  65,  A) ;  the  next  simplest  in  six  segments  (fig.  65,  B) ; 

the  next  in  eight  (fig.  65,  C);  and  so  on.  Much  more  complicated 
figures,  with  nodal  circles,  may  be  obtained  by  stopping  the  plate  at 
appropriate  points  and  bowing  accordingly. 

Figure  (66,  A)  shows  the  simplest  way  in  which  a  square  plate 
can  vibrate,  and  (fig.  66,  B)  gives  the  next  simplest  form ;  the  note 

produced  in  the  latter  case  being  the  fifth  above  that  produced  in 

the  former.  The  sand  figures  become  very  complicated  and 
beautiful  as  the  tones  rise  in  pitch  ;  (fig.  66,  C)  representing  one  of 
the  least  complex.  Adjacent  segments  are  always  in  different 

phases;  that  is,  while  one  is  above  its  ordinary  position,  the  adjacent 
ones  are  below  it.  This  can  be  proved  experimentally,  as  will  be 
subsequently  shown. 

Bells. 

Theoretically,  a  bell  vibrates  in  the  same  way  as  a  plate  fixed  at 
the  centre.     The  simplest  way  in  which  it  can  vibrate  is  with  four 

nodal  lines,  the  tone  thus  produced  being  the  fundamental.      The 
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next  simplest  form  of  vibration  is  with  six  nodes,  the  next  with 
eight,  and  so  on ;  an  odd  number  of  nodes  never  being  produced. 

The  corresponding  vibration  rates  are  as  follows : — 
Number  of  nodes    4,       6,       8,     10,     12, 

Eelative  vibration  rates    -i   :    9  :  16  :  25  :  36, 
or    2'-^  :  32  :  42  :  52  :  62. 

Practically,  however,  owing  among  other  things,  to  unavoidable 
irregularities  in  the  casting,  no  church  bell  ever  has  a  single 
fundamental,  or  only  one  series  of  overtones.  To  this  fact  is  due, 
the  well-known  difficulty  in  ascertaining  the  precise  pitch  of  such 
a  bell ;  the  discords  and  throbbings  that  are  heard,  even  in  the  best 
sounding  bells,  when  the  listener  is  close  to  them,  may  be  put  down 
to  the  same  cause.  There  are  no  absolute  points  of  rest  in  a 
vibrating  bell,  for  the  fundamental  is  never  produced  alone  ;  but  it 
is  easy  to  explore  the  surface  of  the  sounding  bell  with  a  light  ball 
suspended  from  a  thread,  and  thus  find  the  places  of  least  and 
greatest  motion,  the  ball  being  \dolently  dashed  away  from  the 
latter. 

Membranes. 

These,  in  the  form  of  side  drums,  bass  drums,  and  kettle  drums, 
are  used  in  the  orchestra  rather  to  mark  the  rhythm,  than  to 
produce  a  musical  sound;  although  it  is  true,  the  last  mentioned  are 
approximately  tuned  to  two  or  three  notes  of  the  16  foot  octave. 

They  may  be  studied  by  exciting  them  sjrmpathetically,  by  means 
of  organ  pipes,  and  analysing  the  vibration  forms  produced,  by 
scattering  sand  over  them,  as  in  the  case  of  plates.  The  nodal 
lines  are  circles  and  diameters,  or  combinations  of  these. 

SUMMAKY. 

Eods  vibrating  longitvdinally  and  (1)  free  or  (2)  fixed  at  both  ends 
are  analogous  with  open  organ  pipes :  their  vibration  numbers  are 
inversely  as  their  lengths,  and  they  give  the  complete  series  of 
partial  tones. 

When  (3)  fixed  at  one  end  only,  they  are  analogous  with  stopped 
organ  pipes  and  give  only  the  odd  series  of  partials. 

In  (1)  and  (2)  the  time  required  for  a  complete  vibration  is  the 
same  as  the  time  taken  by  a  pulse  to  move  along  the  whole  length 
of  the  rod,  and  back  again  ;  in  (3)  the  time  required  for  a  complete 
vibration  is  twice  this  time.  These  facts  being  kiiown,  it  is  possible 

to  determine  the  velocities  of  sound  m  various  solids,  I'ust  as  a 
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knowledge  of  the  similar  fact  in  the  analogous  case  of  organ  pipes, 
renders  it  easy  to  ascertain  the  velocities  of  sound  in  different 

gases. 
Eods  vibrating  laterally  and  (1)  fixed  at  both  ends  may  vibrate  in 

1,  2,  3,  4,  5,  &c.,  segments.  }i  (2)  free  at  both  ends  they  can 
vibrate  only  in  3,  4,  5,  6,  &c.,  segments.  Eeckoning  the  two  fixed 
ends  in  the  former  case  as  nodes,  the  vibration  rates  of  the  segments 
are  as  follows : 

Number  of  nodes     2,       3,       4,       5,       6,  &c. 

Vibration  rates     32,     52,     72,     92,  112. 

When  fixed  at  one  end  only,  the  vibration  number  varies  inversely 
as  the  square  of  the  length,  and  the  overtones  are  very  distant  from 
one  another  and  from  the  fundamental. 

The  1st  overtone  of  the  tuning-fork  is  more  than  two  octaves 
above  the  fundamental,  and  the  2nd  overtone  more  than  an  octave 
above  the  1st. 

The  pitch  of  the  tuning-fork  is  very  slightly  affected  by  ordinary 
changes  of  temperature. 
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CHAPTER    XII. 

Combination  Tones. 

In  the  preceding  chapters,  musical  sounds,  whether  simple  or 

»3ompound,  have  been  considered  singly,  and  the  phenomena  they 
present,  so  studied.  When  two  or  more  such  sounds  are  heard 

simultaneously,  other  phenomena  usually  occur.  In  the  present 
chapter,  we  proceed  to  study  one  of  these. 

When  two  musical  tones,  either  simple  or  compound,  are  sounded 
together,  new  tones  are  often  heard,  which  cannot  be  detected  when 

either  of  the  two  tones  is  sounded  by  itself.     For  example  :  press 

down  the  keys    corresponding  to  the   notes  C^  and  A',    yvty- 

on  the  harmonium,  and  blow  vigorously.    On  listening  attentively, 

a  tone  may  usually  be  heard,  nearly  coinciding  with  F| 

which  will  not  be  heard  at  all,  when  either  of  the.  two  notes  above 

is  separately  sounded.  Again,  sound  the  two  notes  B!72andF|  S*:^^~ 

loudly  on  the  same  instrument.      With  attention,  a  tone  will  be 

heard  almost  exactly  coinciding  with  D,  ̂ ^  Eaise  either  of 

the  fingers,  and  this  tone  will  vanish. 

These  tones,  which  make  their  appearance  when  two  independent 
tones  are  simultaneously  sounded,  have  been  termed  by  some 

authors,  Eesultant  Tones,  by  others  Combination  Tones.  The  inde- 
pendent tones,  which  give  rise  to  a  combination  tone,  may  con- 

veniently be  termed  its  generators. 

Two  varieties  of  combination  tone  are  met  with  :  in  the  one,  the 

yibration  number  of  the  combination  tone  is  equal  to  the  difference 
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between  the  vibration  numbers  of  its  generators ;  in  the  other,  it  is 
equal  to  their  sum.  The  former  are  consequently  termed  Difference 
or  Differential  Tones,  and  the  latter,  Summation  Tones. 

Differential  Tones. 

These  tones  have  been  known  to  musicians  for  more  than  a 

century.  They  appear  to  have  been  first  noticed  in  1740  by  Serge, 
a  German  organist.  Subsequently,  attention  was  drawn  to  them 

by  Tartini,  who  called  them  *'  grave  harmonics,"  and  endeavoured 
to  make  them  the  foundation  of  a  system  of  harmony. 

As  already  stated,  the  vibration  number  of  a  differential  tone,  is 
the  difference  between  the  vibration  numbers  of  its  generators.  It 
is  easy  therefore  to  calculate  what  differential  any  two  given 
generators  will  produce.  For  example,  two  tones,  having  the 
vibration  numbers  256  and  412  icspectively  are  sounded  simul- 

taneously, what  will  be  the  vibration  number  of  the  differential 

tone  produced  ?     Evidently  412  —  256,  that  is  156. 
Further,  if  the  two  generators  form  any  definite  musical  interval, 

the  differential  tone  may  be  easily  ascertained,  though  their  vibra- 
tion numbers  may  be  unknown.  For  example,  what  differential 

will  be  produced  by  two  generators  at  the  interval  of  an  octave  ? 
Whatever  the  actual  vibration  numbers  of  the  generators,  they 
must  be  in  the  ratio  of  2  :  1.  Therefore  the  difference  between 
them  must  be  the  same  as  the  vibration  number  of  the  lower  of  the 

two  generators  ;  that  is,  the  differential  will  coincide  with  the  lower 

geneiatoi.     Or  shortly  it  may  be  put  thus : — 

generators  j  ?   H  i 

Differential  Tone,  d  =  1 

Again,  what  differential  will  be  produced  by  two  tones  at  the 
interval  of  a  Fifth  ?  The  vibration  numbers  of  two  tones  at  the 

inteival  of  a  Fifth  are  as  2  :  3,  difference  ̂ 3  —  2  =  1.  Therefore 
the  vibration  number  of  the  differential  will  be  to  the  vibration 
number  of  the  lower  of  the  two  tones  as  1  :  2 ;  that  is,  the 
differential  will  be  an  octave  below  the  lower  generator,  or  briefly, 

(  ci  —  3 generators  j  j,     ̂  

Differential  Tone,    d   =  1 

In  the  following  Table,  the  last  column  shows  the  Differentials 
produced  by  the  generators  given  in  the  second  column. 

K 
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Intsbyal. Oeneratobs. Relative 
ViB.  Rates. 

Difference. 
DiFFL.  TOKES. 

Octave   
2 
1 

1 

d' 

Piftli   

\t 

3 
2 

1 d 

Fourth   

If 

4 
3 

1 

d, 

Major  Thiid 
5 
4 

1 

d, 

Minor  Third 

(si 

5 
1 

d, 

Major  Sixth 

(1'
 

5 
3 

2 f 

Minor  Sixth 

(d» 
(r,i 

8 
5 

3 8 

Tone   

fs 

9 
8 

1 

d^ 

Semitone   

(d2 

16 

15 
1 

d, 

It  is  evident  from  the  above,  that  when  the  two  generators  are 
at  a  greater  interval  apart  than  an  octave,  the  differential  tone  lies 
between  them ;  when  they  are  at  the  exact  interval  of  an  octave, 
it  coincides  with  the  lower  generating  tone;  but  when  at  a  less 
interval  than  an  octave  it  lies  below  this  latter,  and  the  smaller  the 
interval,  the  lower  relatively  will  be  the  differential. 

Any  of  the  partials  of  compound  tones  may  act  as  generators,  if 

sufficiently  powerful.  Thus,  if  j  ^^  be  two  compound  generators, 
we  see  from  the  above  table  that  the  fundamentals  d'  and  n  may 
give  rise  to  the  differential  tone  Si;  but  the  2nd  partials  d^  and  n',  if 
sufficiently  powerful,  may  also  generate  the  differential  s  ;  or  the 

partial  n'  and  the  fundamental  d'  may  produce  differential  di;  and  so 
on.  It  is  only  in  rare  cases,  however,  that  the  overtones  will  be 
strong  enough  to  produce  audible  differentials. 
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The  one  condition  necessary  for  the  production  of  differential 
tones,  is,  that  the  same  mass  of  air  be  simultaneously  and  power- 

fully agitated  by  two  tones  ;  that  is,  the  tones  must  be  sufficiently 
loud.  As  the  intensity  of  the  generators  increases,  so  does  that  of 
the  differential,  but  in  a  greater  ratio.  The  condition  just  referred 
to,  is  best  satisfied  on  the  Double  Syren  of  Helmholtz  (fig.  22),  two 
circles  of  holes  in  the  same  chamber  being  open.  The  differentials 
produced  by  this  instrument  are  exceedingly  powerful. 

Two  flageolet  fifes,  blown  simultaneously  by  two  persons,  also 
give  very  powerful  differentials.  The  latter  may  be  approximately 
ascertained  from  the  table  given  above,  but  allowance  must  be 

made  for  the  tempered  intervals.  Thus,  if  the  tones  G^  and  F^  be 
loudly  blown,  the  differential  produced  will  be  very  nearly  that 
given  in  the  table,  viz.,  F,  three  octaves  below. 

Differential  Tones  are  very  conspicuous  on  the  English 
Concertina :  in  fact,  so  prominent  are  they,  that  their  occurrence 
forms  a  serious  drawback  to  the  instrument.  They  may  be  plainly 
heard  also  on  the  Harmonium  and  American  organ :  especially 
when  playing  in  thirds  on  the  higher  notes.  Two  soprano  voices 
singing  loudly,  will  produce  very  audible  differentials.  Owing  to 
the  evanescent  character  of  its  tones,  it  is  difficult  to  hear  differ- 

entials on  the  pianoforte,  but  they  can  be  detected  even  on  this 
instrument  by  a  practised  ear.  Differential  tones  may  be  easily 
obtained  also  from  two  large  tuning-forks,  which  should  be  struck 
sharply.  Two  singing  flames  are  also  well  adapted  for  producing 
these  tones. 

Not  only  do  two  generating  tones  give  rise  to  a  differential,  but 
this  differential  may  itself  act  as  a  generating  tone,  together  with 
either  of  its  generators,  to  produce  a  second  differential  tone  ;  and 
this  again  may  in  its  turn  act  as  a  generator  in  combination 
with  one  of  the  original  generators,  or  with  a  differential,  to 
produce  a  third  ;  and  so  on. 

The  differential  tone  Z|  which  is  generated  by  two  simple  or 
compound  tones  x  and  y,  is  termed  a  differential  of  the  first  order. 
If  X  and  z^  OT  y  and  z^  generate  a  differential  z^,  this  is  said  to  be  of 
the  second  order ;  and  so  on.  Differential  tones  of  the  second  order 
are  usually  very  faint,  and  it  requires  exceedingly  powerful  tones 
to  make  differential  tones  of  the  third  order  audible :  in  fact,  the 

•latter  are  only  heard  under  very  exceptio  lal  circumstances. 
To  determine  what  differentials  of  the  second  and  third  order  can 

he  present,  when  two  tones  at  any  definite  interval  are  loudly 
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sounded,  we  proceed  as  before.  For  example,  let  the  two 

generators  be  j  J^'.  The  relative  rates  of  vibration  being  j  J  ,  the relative  vibration  rate  of  the  differential  of  the  first  order 

=  5  —  4  =  1.  Subtracting  this  from  the  generators  5  and  4  we 
obtain  the  relative  vibration  rates  of  the  differentials  of  the  second 

order  viz.  5  —  1  =  4  and  4  —  1  =:  3,  this  latter  only  being  a  new 
tone.  Again,  subtracting  this  3  from  the  higher  generator,  we  get 
another  new  tone  5  —  3  =  2,  a  differential  of  the  third  order. 
Thus,  omitting  duplicate  tones  we  have — 

generators 
Differential  of  1st  order 

2nd     „ 
3rd     ., 

n'  =  o 
d'  =4 

d,  =  l(=5-4) 
S  =  3  (=  4  —  1) 
d  =  2  (=  5  —  3) 

The  2nd,  3rd,  4th,  and  5th  columns  of  the  following  table  show  the 
differentials  of  the  1st,  2nd,  3rd,  and  4th  order  which  may  be  pro- 

duced by  the  tones  in  the  1st  column. 

IXTEEVAL. 
DiFF.  OF  1st. 

ORDER. 2XD  ORDER. 3rd  order. 4th  order. 

Fourth  (^'  =  t (.8    —  o 

l=d, 
2  =  d 

Major  3rd    |  ^1  =  ̂  

l=d, 
3   =   8 2  =d 

Minor  3rd    [  ^|  ̂  5 
1     =d, 

4  =  d' 

2  =  d 
3  =   8 

Major  6th    [  Jl  ̂  3 
2  =  f l  =  f. 

4  =  fl 

Minor  6th    [  jj;  =  8 

3  =  8 2  =  d 
6  =  8' 
1  =d, 

7  =  ta' 

4=d' 

Tone  [5;='^ 

1  =  4 7  =  ta 

2  =  d, 
6=  8 

5  =  n 
4  =  d 3=8, 

•Nearly. 
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It  will  be  seen  from  the  above,  that  in  general  a  complete  series 

of  tones  may  be  produced,  corresponding  to  the  complete  series  of 
partial  tones,  1,  2,  3,  4,  &c.,  up  to  the  generators.  It  will  be 
noticed  also,  that  the  same  tones  may  occur  with  compound  tones, 
as  differential  tones  of  their  upper  partials. 

Though  combination  tones  are  generally  subjective  phenomena, 
yet  on  some  instruments,  as  for  example,  the  Double  Syren  and 
the  Harmonium,  they  are  objective,  or  at  any  rate  partly  so.  As  a 
proof  of  this  fact,  it  is  found  that  differential  tones  on  these 

instruments,  may  be  strengthened  by  resonance.  Thus,  sound  loudly 

G'  and  D-  on  a  harmonium,  and  tune  a  resonator  to  the  differential  G. 
By  alternately  applying  the  resonator  to,  and  withdrawiDg  it  from 
the  ear,  while  the  geaeiating  notes  are  being  sounded,  it  is  easy  to 

appreciate  the  alternate  i-einforcement  and  falling  off  of  the  G. 

It  was  formerly  thought,  that  differential  tones  were  foi-med  by 
the  coalescence  of  beats  (see  next  Chap.),  a  supposition  which  was 
supported  by  the  fact,  that  the  number  of  beats  generated  by  two 
tones  m  a  second,  is  identical  with  the  vibration  number  of  the 

differential  tone  they  generate.  That  this  is  not  the  cause  of 
Differential  Tones,  vsdll  be  seen  from  the  following  considerations : 

1st.  Under  favourable  circumstances,  the  rattle  of  the  beats 

and  the  differential  tone  may  be  heard  simultaneously. 
2nd.  Baats  are  audible,  when  the  generating  tones   are  very 

faint,  in  fact,  they  may  be  beard  even  when  the  generating 
tones    are    inaudible.     Differentials,    on    the  other  hand, 

invariably  require  tolerably  loud  generators. 
3rd.  This  supposition  offers  no  explanation  of   the  origin  of 

the  analogous  phenomenon  of  Summation  Tones. 
Finally,  Helmholtz  has  offered  a  theory  of  the  origin  of  Differential 
Tones,   which  satisfactorily  explains  all  the  phenomena  of   both 
Differential  and  Summation  tones.      This   theory   is   difficult   to 

explain,  without  such  recourse  to  mathematics,  as  woiild  be  unsuit- 
able to  a  work  like  this.      We  must  be  content,  therefore,  to  state 

it  in  general  terms  as  follows : 

When  two  series  of  sound-waves  simultaneously  traverse  the 
same  mass  of  air,  it  is  generally  assumed  that  the  resultant  motion 
of  the  air  particles  is  equal  to  the  algebraic  sum  of  the  motions, 
that  the  air  particles  would  have  had,  if  the  two  series  had 

traversed  the  mass  of  air,  independently  of  one  another.  This, 

however,  is  only  sti-ictly  true,  when  the  amplitudes  of  the  sound- 
waves are  very  small,  that  is,  when  the  air  particles  oscillate  only 

through  very  small  spaces.     When  the  amplitudes  of  the  waves  are 
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at  all  considerable  in  proportion  to  their  length,  secondary  waves 
are  set  up,  which  on  reaching  the  ear  give  rise  to  Combination 
Tones.  The  higher  octave  of  the  fundamental  tone,  which  may  be 

frequently  heard,  when  a  tuning-fork  is  sharply  sti-uck,  has  a 
similar  origin. 

Summation  Tones. 

Helmholtz,  as  already  mentioned,  worked  out  the  theory  just 
referred  to,  mathematically,  and  proved  that  two  tones  with  given 
vibration  numbers,  may  not  only  produce  a  third  tone,  having  ita 
vibration  number  equal  to  their  difference,  but  also  another  tone 

equal  to  their  sum.  To  this  latter  sound,  the  term  "Summation 
Tone  "  is  applied. 

It  is  not  difficult  to  satisfy  oneself  experimentally  of  the  reality 
of  the  summation  tones  on  such  an  instrument  as  thft  Hai-monium 
or  American  Organ ;  indeed,  these  tones  are  much  louder  than  is 
generally  supposed.  Thus  if  Fg  and  C|  be  selected,  the  summation 
tone  will  be  A|,  which  with  careful  attention  may  generally  be 
detected;  the  following  table  gives  in  the  last  column  the 
summation  tones  that  may  be  produced  by  the  generators  in  the 
second  column. 

Interval. Genekatobs. Relative 
ViB.  Rates. 

SCM.              1       S'^-^ 

Octave   a 2 
1 3           1           s 

Fifth   

(J 

3 
2 5 n 

Fourth   

I!, 
4 
3 7 

ta* 

Major  3rd. . 
o 
4 9                 r 

1 

Minor  3rd.. 
(s, 

(n, 

6 
5 11 

f* 

Major  6th, . 1^; 
5 
3 8 

f    ■ 

Minor  6th . . 
(d 

(n, 

8 
6 

13 

1* 

•Approximately. 
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Summary. 

A  Combination  or  Resultant  Tone  is  a  third  sound,  which,  may  be 

heard,  when  two  tones  of  different  pitch  are  simultaneously  sounded, 
and  which  is  not  heard,  when  eithor  of  these  two  tones  is  sounded 
alone. 

The  two  tones  which  give  rise  to  a  Combination  Tone  are  termed 

its  generators. 

There  are  two  kinds  of  Combination  Tone — 

(1).  The  Differential  Tone :  the  vibration  number  of  which  is 
the  difference  of  the  vibration  numbers  of  its  generators  ; 

(2)  the  Summation  Tone :  the  vibration  number  of  which  is  the 
8um  of  these  vibration  numbers. 

Differential  Tones  may  be  of  various  orders. 

A  Differential  of  the  \st  order  is  that  which  is  produced  by  two 
independent  tones  or  generators. 

A  Differential  of  the  2nd  order  is  that  which  is  produced  by  the 
Differential  of  the  1st  order,  and  either  of  the  generators. 

A  Differential  of  the  ̂ rd  order  is  that  which  is  produced  by  the 
Differential  of  the  2nd  order,  and  either  of  the  foregoing  tones;  i.e.^ 
either  the  Differential  of  the  1st  order,  or  one  of  the  generators. 

A  Differential  of  the  4th  order  is  that  which  is  produced  by  the 
Differential  of  the  3rd  order  and  either  of  the  foregoing  tones  ;  and 
so  on. 

Differential  Tones  are  not  the  result  of  the  coalescence  of  beats. 
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CHAPTER    XIII 

On  Interference. 

We  have  now  to  consider  another  of  the  phenomena  which  may 
occur,  when  two  musical  sounds  are  heard  simultaneously  ;  and  in 
the  present  chapter,  we  shall  suppose  the  two  sounds  in  question  to 
be  simple  tones. 

Let  the  horizontal  dotted   straight  lines  in  fig.  67,  represent 
surfaces  of  still  water ;  and  let  two  series  of  waves  of  equal  length 

Fig.  67. 

and  amplitude  be,  at  the  same  moment,  passing  from  left  to  right. 
Let  the  curved  line  (1)  represent  in  section  the  form,  that  the  waves 
would  have,  if  those  of  the  first  series  alone  were  present; 
and  let  (2)  represent,  in  the  same  way,  the  form,  that  the  water 
would  assume,  if  the  second  series  of  waves  alone  were  passing. 
Let  us  also,  in  the  first  place,  suppose  the  two  series  of  waves  to 
coincide,  so  that  crest  falls  on  crest,  and  trough  on  trough  ;  that  is, 
let  them  both  be  in  the  same  phase,  as  represented  in  (1)  and  (2). 
Under  these  circumstances,  each  series  will  produce  its  full  effect. 

J 
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independently  of  the  other,  as  explained  in  Chap.  VIII,  pp.  82  &  S3 ; 
crest  being  added  to  crest,  and  trough  to  trough,  to  produce  a  wave 

(3)  of  the  same  length  as  each  of  the  coincident  waves,  but  of  twice 
the  amplitude  of  either. 

Now,  let  us  suppose,  that  these  two  series  of  waves  come  together 
in  such  a  way,  that  the  crests  of  one  exactly  coincide  with  the 
troughs  of  the  other  :  in  other  words,  let  them  be  in  opposite  j)^Mse 
as  represented  in  fig.  68  (4)  (5).     In  this  case,  by  the  use  of  the 

(6). 
Fig.  68. 

pame  kind  of  reasoning  as  employed  in  Chap.  VIII,  we  find  that,  as 
the  drops  of  water  are  solicited  in  opposite  directions,  by  equal 
forces,  at  the  same  time,  the  result  is  no  wave  at  all,  fig.  68  (6). 

We  have  supposed  here,  that  the  waves  in  both  series  have  the 
same  amplitude.  If  they  have  different  amplitudes,  it  is  evident 
from  the  above,  that,  1st.  when  the  two  series  are  in  the  same  phase, 
the  amplitude  of  the  resultant  wave  is  equal  to  the  sum  of  the 
amplitudes  of  the  constituents ;  2nd,  when  the  two  series  are  in 

opposite  phases,  the  amplitude  of  the  i-esultant  wave  is  equal  to  the 
difference  of  the  amplitudes  of  the  constituents.  Further,  it  is 
evident,  that  if  they  are  neither  in  the  same  nor  opposite  phases, 
the  amplitude  of  the  resultant  wave  will  be  intermediate  between 
these  two  limits. 

Now  we  may  take  the  curves  (1)  (2)  (4)  (5)  of  figs.  67  and  68,  as 
the  associated  waves  of  two  simple  sounds,  and  therefore  at  once 
deduce  the  following  results.  1st,  Two  sound  waves  of  the  same 

length  and  amplitude,  and  in  the  same  phase,  produce  a  resultant 
wave  of  the  same  length,  but  twice  the  amplitude  of  either  wave.  2nd, 
Two  sound  waves  of  the  same  length  and  amplitude,  but  in  opposite 

phase,  destroy  one  another's  effects,  and  no  wave  is  produced. 
3rd,  Two  sound  waves  of  the  same  length  but  different  amplitudes, 
will  produce  a  wave  of  the  same  length  as  either  wave,  but  having 
an  amplitude  equal  to  the  sum  or  difference  of  their  amplitudes, 
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according  as  the  waves  are  in  the  same  or  opposite  phase.  4th, 

If  the  two  sound  waves  are  not  exactly  in  the  same  or  opposite- 
pnase,  the  amplitude  of  the  resultant  wave  will  be  intermediate 
between  these  limits. 

If  one  sound  wave  have  twice  the  amplitude  of  another,  the 
intensity  of  the  tone  produced  by  the  one  will  be  foui  times  that 
produced  by  the  other,  since  intensity  varies  as  the  square  of  the 
amplitude.  It  follows  therefore  from  the  above,  that  when  two 
simple  tones  of  the  same  pitch  and  intensity  are  sounded  together, 
the  two  may  so  combine  as  to  produce  1st,  a  simple  tone  of  the 
same  pitch,  but  of  four  times  the  intensity  of  either  of  them  ;  2nd, 
silence ;  or  3rd,  a  simple  tone  of  the  same  pitch,  but  intermediate  in 

intensity  between  these  two  limits  ;  according  as  their  sound  waves- 
come  together  in  the  same,  opposite,  or  intermediate  phases. 

The  fact  that  two  sounds  may  so  interfere  with  one  another  as  to> 
produce  silence,  strange  as  it  may  seem  at  first,  can  be  demonstrated 
experimentally,  and  is  a  special  case  of  the  general  phenomenon  of 

*'  Interference  of  waves."  The  only  difficulty  in  the  experimental 
proof,  is  to  obtain  sound  waves  of  equal  length  and  intensity,  and 
in  exactly  opposite  phase.  Before  explaining  the  way  in  which 
this  diflSculty  can  be  overcome,  we  shall  take  the  following 
supposititious  case. 

Let  A  and  B  (fig.  69)  be  two  tuning-forks  of  the  same  pitch,  and 
let  us  consider  only  the  right  hand  prongs  A  and  B.     Now  if  these 

("■Hill  iiiiiiiiiiiiiiiii  •« illlM   II    II   ■ill  "Ml 

Fig.  69. 

prongs  are  in  the  same  phase,  that  is,  both  swinging  to  the  right  and 
left,  at  exactly  the  same  times,  and  if  they  are  exactly  a  wave- 

length apart,  it  is  evident  that  the  two  series  of  waves  passing 
along  A  C,  originated  by  their  oscillation,  will  exactly  coincide, 
condensation  with  condensation,  and  rarefaction  with  rarefaction, 

as  represented  by  the  dark  and  light  shading.  The  same  thing  will 
occur,  if  the  distance  between  A  and  B  be  two,  three,  four,  or  any 
whole  number  of  wave-lengths.  But  suppose  the  distance  from  A 
to  B  were  only  half  a  wave-length,  as  represented  in  fig.  70  ; 
evidently,  the  condensations  from  the  one  fork  will  coincide  with 
the  rarefactions  from  the  other,  and  thus  the  air  to  the  right  of  B 
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m 

Fig.  70. 

will  be  at  rest,  as  indicated  by  the  uniform  shading.  Precisely  the 

same  thing  would  occur,  if  A  and  B  were  three  or  any  number  of 

half  wave-lengths  apart. 

Sir  John  Herschel  made  use  of  this  principle  in  the  construction 

of  the  apparatus  shown  in  fig.  71.     The  tube  o/,  which  should  b© 

C 

^ 

V:=t 

rr—^ 

T 

^ 

D'
 

Fig.  71. 

longer  than  represented  in  the  figure,  divides  into  two  at  /,  the  one 
branch  being  carried  round  w,  and  the  other  round  n.  These  two 
branches  again  unite  at  g,  to  form  the  tube  g  p.  The  TJ  shaped 

portion  n  b,  which  slides  air-tight  by  telescopic  joints  over  the  main 
tube  a  b,  can  be  drawn  out,  as  shown  in  the  figure.  When  a 
vibrating  fork  is  held  at  o,  the  sound  waves  produced,  divide  at/, 

and  pass  along  the  two  branches,  reuniting  at  g,  before  reaching  the 
ear  of  the  observer  at  p.  Now  if  the  U  shaped  portion  is  pushed 
home  to  a,  the  waves  through  both  branches  reach  the  ear  together; 
but  if  it  be  gradually  pulled  out,  a  point  is  reached  at  which  the 
sound  disappears  altogether.     From  what  has  been  said  above,  it 
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will  be  seeiL,  that  this  is  the  case,  when  the  right  hand  branch  is 
half  a  wave-length  longer  than  the  left  hand  branch,  that  is,  when 
a  bis  equal  to  one  fourth  of  a  wave-length.  Thus,  this  instrument 
may  be  used,  not  only  to  demonstrate  the  phenomenon  of  Inter- 

ference, but  also  for  roughly  ascertaining  the  wave-length,  and  hence 
the  pitch  of  a  simple  tone. 

The  vibrating  plate  (fig.  72)  is  a  veiy  convenient  instrument  with 
which  to  illustrate  the  phenomenon  of  interference.     In  the  brief 

I 
Fig.  72. 

description  of  this  instiaimeiit  given  in  Chap.  XI,  it  was  stated  that 
adjacent  sectors  are  always  in  opposite  phase;  that  is,  while  one 
sector  is  moving  upwards,  the  adjacent  ones  are  moving  downwards. 
If  this  be  the  case,  it  follows,  that  the  sound  waves  originated 
above  two  adjacent  sectors  are  in  opposite  phase,  and  thus 
interfere  with  one  another,  to  diminish  the  resultant  sound. 
Accordingly,  if  the  hand  be  placed  above  any  vibrating  sector,  tht. 
sound  is  not  diminished,  but  increased.  Still  more  is  this  the  case 
if  the  cardboard  or  wooden  sectors,  on  the  right  of  fig.  72,  be  held 
over  the  segments  of  the  plate  when  vibrating  as  shown  in  the  figure ; 
interference  being  then  completely  abolished,  the  remaining 

A  ̂   segments  sound  much  more  loudly.     Thus,  by  sacri- 
ficing a  part  of  the  vibrations,   the  remainder  are 

icndered  more  effective. 

The  effect  of  the  interference  of  adjacent  sectors 
may  be  rendered  visible,  by  the  additional  apparatus 
shown  in  fig.  73.  A  B  is  a  tube  which  branchos  into 
two  at  the  bottom,  and  is  closed  at  A  by  a  mem- 

brane, upon  which  a  few  grains  of  sand  are  scattered. 
Holding  the  ends  of  the  branches  over  adjacent 

Fio.  73.         segments,  the  membrane  is  unaffected,  and  the  sand 

A 
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remains  at  rest,  for  the  condensation  wliich.  enters  at  one  branch 
and  the  rarefaction  which  simultaneously  enters  at  the  other,  unite 

at  B  to  neutralize  one  another's  effects.  When,  however,  the 
ends  are  held  over  alternate  sectors,  the  sand  is  violently  agitated, 
showing  that  they  are  in  the  same  phase. 

It  is  easj^  to  illustrate  the  phenomenon  of  Interference,  with  no 
other  apparatus   than  an  ordinary  tuning-fork.     Let  0,0,  fig.  74 

1 \  1 

Fig.  74. 

represent  the  ends  of  the  prongs  of  such  a  fork,  looked  down  upon , 
as  it  stands  upright.  In  the  first  place,  let  it  be  supposed,  that 
these  prongs  are  moving  towards  one  another.  In  this  case,  the 
particles  of  air  between  the  prongs  will  become  more  closely  packed 
together,  and  consequently  will  crowd  out  both  above  and  below, 
giving  rise  to  condensations  both  in  c  and  d.  At  the  same  time,  in 
consequence  of  the  inward  swing  of  the  prongs,  the  air  particles 
to  the  left  and  right,  sharing  this  movement,  will  be  left  wider 
apart  than  at  first ;  that  is,  rarefactions  will  be  formed  at  a  and  h. 
New,  let  it  be  supposed  that  the  prongs  are  making  an  outward 
journey ;  a  partial  vacuum  will  then  be  formed  between  them,  and 
the  air  rushing  in  from  without,  will  cause  rarefactions  at  c  and  d  ; 
while  0  and  o,  pressing  on  the  air  at  either  side,  will  at  the  same 
time,  give  rise  to  condensations  at  a  and  h.  Thus,  we  see,  that  as 

long  as  a  tuning-fork  is  vibrating,  four  sets  of  waves  are  proceeding 
from  it,  two  issuing  in  directly  opposite  directions  from  between 
the  prongs,  and  two,  also  in  directly  opposite  directions,  at  right 
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angles  to  the  first  mentioned  ;  and  as  we  have  j  list  seen,  the  waves 
that  issue  from,  between  the  prongs  are  in  the  opposite  phase,  to 
those  that  proceed  at  right  angles  to  them  ;  that  is,  whenever  there 
are  condensations  at  c  and  d,  there  are  rarefactions  at  a  and  b,  and 
vice  versa.  Now,  each  of  these  four  sets  of  waves,  in  passing 
outwards  from  its  source,  will  of  course  spread  in  all  directions; 
and  therefore,  the  adjacent  waves  will  meet  along  four  planes, 
represented  by  the  dotted  lines  in  the  figure.  Along  these  lines, 
therefore,  the  interference  must  be  total ;  that  is,  any  air  particle  in 
any  one  of  them,  which  is  urged  in  any  direction  by  the  waves  in  c 
or  d,  will  be  urged  in  the  opposite  direction,  with  precisely  equal 
force,  by  the  waves  from  a  or  6 ;  that  is,  it  will  remain  at  rest. 
Consequently  the  dotted  lines  are  lines  of  silence,  the  maximum  of 
sound  being  midway  between  any  two  of  them.  If  the  vibrating 
fork  were  large  enough,  and  a  person  were  to  walk  round  it  in  a 
circle,  starting  from  one  of  these  points  of  maximum  intensity,  he 
Tv^ould  find,  that  the  sound  gradually  diminished  as  he  approached 
the  dotted  line,  where  it  would  be  nil.  After  passing  this  point, 
the  sound  would  increase  to  the  maximum,  then  diminish  again, 
and  so  on ;  four  points  of  maximum,  and  four  of  minimum  intensity 
occurring  during  the  circuit. 

To  verify  all  this,  strike  a  tuning-fork,  and  then  hold  it  with  the 
prongs  vertical,  and  with  the  back  of  one  of  them  parallel  to  the 
•ear.  Note  the  intensity  of  the  sound,  and  then  quickly  revolve 
the  fork  half-way  or  a  quarter- way  round :  the  intensity  is 
unaltered.  Now  strike  the  fork  again,  and  after  holding  it  as  at 
first,  turn  it  one-eighth  round,  so  that  it  is  presented  corner-wise  to 
the  ear  ;  the  sound  will  be  all  but  extinguished.  Again  strike  the 
iork,  and  holding  it  to  the  ear  as  at  first,  revolve  it  slowly:  the  four 
positions  of  greatest  intensity  and  the  four  interference  positions 
are  readily  perceived.  To  vary  the  experiment,  again  strike  the 
fork,  and  rotate  it  rapidly  before  the  ear  :  the  effect  is  very  similar 
to  the  beats,  to  be  studied  presently. 

These  experiments  are  much  more  effective,  and  the  results  can  be 
demonstrated  to  several  persons  at  once,  when  a  resonator  is  used. 

For  an  ordinary  C  tuning-fork,  a  glass  cylinder  closed  at  one  end, 
about  f  inch  in  diameter,  and  between  six  and  seven  inches  long,  is 
veiy  convenient.  If  not  of  the  exact  length  to  resound  to  the  fork, 
.a  little  water  may  be  gradually  poured  in,  as  described  in  Chap.  YII. 
When  the  vibrating  fork  is  held  with  the  back  of  one  prong 
parallel  to  the  top  of  the  resonator,  or  at  right  angles  to  this 

-j)ortion,  the  sound  of  the  fork  is  much  intensified ;  but  when  held 



ON  INTERFERENCE.  143 

with  the  coiner  of  the  prong  towards  the  resonator,  the  sound  dies 
out.  The  effects  produced  when  the  fork  is  revolved,  are  precisely 
the  same  as  those  above  mentioned,  but  much  intensified  by  the 
resonance  of  the  tube. 

These  experiments  with  resonators  may  be  varied  in  many  ways. 
Thus,  first  hold  the  vibrating  fork  with  the  edge  of  one  of  the 
prongs  towards  the  resonator ;  no  sound  is  heard.  Now,  keeping 
the  fork  still  in  this  position,  move  it  along  horizontally  for  a  short 
distance,  so  that  only  the  lower  prong  is  over  the  resonator ;  the 
sound  will  now  burst  forth,  for  the  side  of  the  resonator  cuts  off  the 
waves  issuing  from  between  the  prongs,  which  before  interfered 
with  those  from  the  outside  of  the  lower  prong. 

Again,  tune  two  such  resonators  as  the  above  to  any  tuning-fork, 
and  arrange  them  at  right  angles  to  one  another,  as  represented  in 
fig.  75.     Now  hold  the  vibrating  tuning-fork  in  such  a  position. 

Fio.  75. 

that,  while  the  back  of  one  of  the  prongs  is  presented  to  on© 
resonator,  the  space  between  them  is  presented  to  the  other.  Under 
these  circumstances,  very  little  sound  will  be  heard,  for,  from  what 
has  been  already  said,  it  will  be  seen,  that  the  waves  proceeding 
from  the  two  resonators  will  always  be  in  opposite  phase,  and  thus 

will  neutralize  one  another's  effects.  If,  however,  while  the  fork  is 
vibrating,  we  slide  a  card  over  the  mouth  of  one  of  the  resonators, 
the  other  resonator  will  produce  its  due  effect,  and  the  sound  will 
burst  forth. 

It  is  found,  that  two  similar  organ  pipes  placed  together  on 
the  same  wind  chest,  interfere  with  one  another ;  the  motion  of  the 
air  in  the  two  pipes  taking  place  in  such  a  manner,  that  as  the  wave 
streams  out  of  one,  it  streams  into  the  other  and  hence  an  observer 
at  a  distance  hears  no  tone,  but  at  most  the  rustling  of  the  air. 
For  this  reason,  no  reinforcement  of  tone  can  be  effected  in  an 
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organ,  by  combiaing  pipes  of  tbe  same  kind,  under  the  conditions 
just  referred  to. 

"We  pass  on  to  consider  the  case  of  the  interference  of  two  simple 
tones,  which  differ  slightly  in  pitch.  Let  two  tuning-forks,  stand- 

ing close  together,  side  by  side,  be  supposed  to  commence  vibrating 
together  in  exactly  the  same  phase  ;  and  for  the  sake  of  simplicity, 
we  will  suppose  their  vibration  numbers  to  be  very  small,  viz.,  15 
and  16  respectively.  Now,  although  these  two  forks  may  start  in 
exactly  the  same  phase,  that  is,  the  prongs  of  each  may  begin  to 
move  inward  or  outward  together,  this  coincidence  can  evidently 
not  be  maintained,  since  their  vibration  rates  are  different.  The 
flatter  fork  will  gradually  lag  behind  the  other,  tiU,  in  half  a  second, 
it  will  be  just  half  a  vibration  behind,  having  performed  only  7| 
vibrations  while  the  other  fork  has  performed  8.  At  the  end  of  half 
a  second,  therefore,  the  two  forks  will  be  in  complete  opposition  ; 
the  prongs  of  the  one  fork  moving  one  way,  while  those  of  the 
other  fork  are  moving  in  the  opposite.  After  the  lapse  of  another 
half  second,  the  flatter  of  the  two  forks  will  be  exactly  one  com- 

plete vibration  behind  the  other,  and  consequently  the  forks  will  be 
in  exact  accordance  again,  as  they  were  at  first.  These  changes 
will  evidently  recur  regularly  every  second.  Thus,  assuming  as  we 
have  done,  that  the  forks  are  in  exactly  the  same  phase  at  the 
commencement,  we  find  that,  at  the  beginning  of  each  successive 
second,  the  sound-waves  from  the  two  forks  coincide,  condensation 
with  condensation,  or  rarefaction  with  rarefaction,  to  produce  a 

sound-wave  of  greater  amplitude  than  either;  but  at  the  half 
seconds,  the  two  series  of  sound  waves  will  interfere,  the  conden- 

sation of  one  with  the  rarefaction  of  the  other,  to  produce  a  sound- 
wave of  less  amplitude,  or  even,  if  the  amplitudes  of  the  two  waves 

are  equal,  to  produce  momentarily,  no  sound  wave  at  all.  These 
changes  in  the  amplitude  of  the  resultant  wave  will  evidently  be 
gradual,  so  that  the  effect  on  the  ear  will  be  as  follows :  at  the 
commencement,  a  sound  of  considerable  intensity  will  be  heard  ; 
during  the  first  half  second,  its  intensity  will  diminish,  till  at  the 
exact  half  second,  it  is  at  a  minimum,  or  may  even  be  nil ;  during 
the  next  half  second  the  intensity  wdll  increase,  till  at  the  beginning 
of  the  next  second  the  sound  has  the  same  intensity  as  at  first. 
Precisely  the  same  changes  will  occur  during  each  successive  second; 
80  that  a  series  of  crescendos  and  diminuendos,  or  swells,  will  be 
heard,  one  crescendo  and  one  diminuendo  being  produced  in  the 
present  supposed  case,  every  second. 
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These  alternations  of  intensity,  which  are  perceived  whenever 
two  tones  of  nearly  the  same  pitch  are  sounded  together,  are 
commonly  termed  Beats, 

Fig.  76. 
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In  order  to  obtain  a  clearer  insight  into  this  matter,  let  us  suppose 
the  forks  in  the  above  case  to  commence  vibrating,  as  before,  in 
exactly  the  same  phase,  and  let  us  cousider  the  waves  produced 
during  the  first  half  second.  As  their  vibration  numbers  are 
assumed  to  be  16  and  15,  the  sharper  fork  will  have  originated 
exactly  8,  and  the  flatter  fork  exactly  7^  waves  during  this  period. 
Let  the  8  equal  associated  waves  of  fig.  76  B,  represent  the  former, 
as  if  they  alone  were  present :  and  let  the  7^  associated  waves  of 
fig.  76  A,  represent  the  latter,  on  the  same  supposition.  The  two 
series  are  placed  one  above  the  other,  instead  of  being  superposed, 
for  the  sake  of  distinctness.  The  forks  are  supposed  to  be  at  the 
right  hand  side  of  the  figure,  the  waves  travelling  towards  the  left; 
thus  the  first  pair  of  waves  originated,  are  now  on  the  extreme  left, 
the  next  pair  immediately  behind  these,  and  so  on.  In  accordance 
with  the  supposition,  the  two  series  of  waves  (which,  it  may  be 
noted,  are  not  represented  as  of  equal  amplitude)  commence  in 
exactly  the  same  phase,  but  in  consequence  of  their  difference  in 
length,  this  exact  accordance  becomes  less  and  less  in  succeeding 
waves,  till  at  length,  those  on  the  extreme  right  are  in  exactly 
opposite  phase.  Now  when  the  two  forks  are  simultaneously 
sounding,  their  sound-waves  combine  or  interfere,  to  produce  a 
resultant  wave,  the  associated  wave  form  of  which  we  can  obtain, 
by  compounding  the  two  associated  wave  forms,  A&B,  in  the  manner 
before  described.  The  thick  curved  line  of  fig.  76  C  has  been  thus 
obtained ;  and  we  see  from  it,  that  the  two  original  sound-waves 
coalesce,  to  produce  a  resultant  sound-wave,  which  at  first  has  an 
amplitude  equal  to  the  sum  of  the  amplitudes  of  its  constituent 
waves,  but  that  the  amplitude  gradually  diminishes,  till  in  half  a 
second,  it  is  only  equal  to  the  difference  of  the  amplitudes  of  its 
constituents.  It  is  easy  to  see  from  the  figure,  that  during  the  next 
half  second,  the  amplitude  of  the  resultant  wave  will  gradually 
increase,  till  at  the  beginning  of  the  next  second,  it  will  again  have 
reached  its  maximum.  These  alternations  in  the  amplitude  of  the 

resultant  waves,  produce  of  course  in  the  resultant  sound,  corre- 
sponding alternations  of  intensity,  which,  as  already  mentioned, 

are  termed  Beats,  and  which  may  be  represented  in  the  ordinary 

musical  way  by  crescendo  and  diminuendo  marks — 

It  is  evident  from  fig.  76,  that  half  a  beat  is  formed  by  the 
interference  of  the  waves  there  represented,  that  is,  in  half  a  second. 
Therefore  when  two  sounds,  the  vibration  numbers  of  which  are  15 



ON  INTERFERENCE. 
147 

^ 

and  16  respectively,  are  heard  together,  16  —  15  or  1  beat  per  second 
will  bo  heard;  that  is,  the  number  of  beats  per  second,  is  equal  to 
the  difference  of  the  vibration  numbers.  It  is  true,  that  16 

vibrations  per  second  would  not  produce  a  musical  sound,  but  that 
in  no  way  affects  the  above  reasoning.  For  suppose  the  vibration 
numbers  of  the  forks  to  have  been  160  and  150;  the  figure  will 

represent  the  waves  originated  in  one-twentieth  of  a  second.  Con- 
sequently in  this  case  half  a  beat  will  be  formed  in  one-twentieth 

of  a  second,  or  one  beat  in  one-tenth  of  a  second;  that  is,  10  =  (160  — 
150)  beats  per  second.  It  is  evident,  therefore,  that  the  number  of 

beats  per  second,  due  to  two  simple  tones,  is  equal  to  the  difference  of 
their  respective  vibration  numbers. 

For  purposes  of  experimental  study,  wide  stopped  organ  pipes  are 
well  adapted  for  the  production  of  beats  between  simple  tones ;  for 

when  such  pipes  are  gently  blown,  the  fundamentals  only  are 
heard,  or  at  most,  accompanied  by  very  faint  third  partials.  If 
two  exactly  similar  pipes  be  used,  the  tones  produced  will  of  course 
be  in  unison.  To  obtain  beats,  the  pitch  of  one  may  be  slightly 
lowered  by  shading  the  embouchure ;  or  better  still,  one  of  the  pipes 

instead  of  being  permanently  closed  at  the  top,  may  be  stopped  by 

a  movable  wooden  piston,  or  plug,  working  air-tight  in  the  pipe. 
After  the  pipes  have  been  brought  into  unison,  the  pitch  of  the  one 

may  be  varied  to  any  desired  extent,  by  moving  the  wooden  piston, 
which  alters  the  length  of  the  vibrating  air 
column.  If  the  plug  be  moved  very  slightly 
from  its  unison  position,  very  slow  beats 
may  be  obtained,  each  beat  lasting  for  a 
second  or  more.  The  crescendo  and  sub- 

sequent diminuendo  of  the  beat  is  then 

very  perceptible.  By  gradually  moving 
the  plug  farther  and  farther  from  its  unison 
position,  the  beats  follow  one  another  more 

and  more  rapidly,  till  at  last  they  cease  to 
be  separately  distinguishable. 

The  interference  of  two  such  organ  pipes 
as  the  above,  may  be  rendered  visible  by 
the  use  of  the  manometric  flame  apparatus 
«hown  in  fig.  55.  Instead  of  each  tympanum 
baving  its  own  flame  however,  the  outlet 

pipes  from  the  two  tympana  unite  into  one 
(fig.   77),  with  a  single  flame  at  the  end. 

□ □ 

Fig.  77. 
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Thus,  when  the  vibrating  air  columns  are  in  the  same  phase,  the 
india-rubber  membranes  will  vibrate  simultaneously  in  the  same 
direction,  so  as  to  expel  the  gas  with  greater  force,  and  thus  pro- 

duce a  very  elongated  flame.  On  the  other  hand,  when  they  are  in 
opposite  phase  the  membranes  will  move  simultaneously  in  opposite 

directions,  and  thus,  neutralizing  one  another's  effects,  their  move- 
ments will  be  without  influence  on  the  flame.  The  latter  will 

therefore  rise  and  fall  with  the  beats,  of  which  indeed,  they  are  the 
optical  expression.  By  the  aid  of  a  rotating  mirror,  the  separate 
vibrations  of  the  flame  may  also  be  observed  as  explained  on 

page  5. 
Instead  of  the  organ  pipes  referred  to 

above,  two  of  the  singing  flames  described 
in  Chap.  I,  fig.  3,  may  be  used ;  but  in 
this  case,  beats  from  overtones,  as  well  as 
from  the  fundamentals,  will,  in  all  proba- 

bility, be  heard.  In  order  to  vary  the 
pitch,  one  pipe  should  be  supplied  with  a 
sliding  tube,  as  shown  in  the  left  hand 

pipe  of  fig.  78. 

Two  unison  tuning-forks  may  be  used 
to  produce  beats  of  varying  rapidity.  The 
pitch  of  one  may  be  lowered  by  attaching 
pieces  of  bees- wax  to  its  prongs,  or,  if  the 
forks  be  large,  by  fastening  a  threepenny 
piece,  by  means  of  wax,  to  each  prong. 
With  large  forks,  these  beats  also  may  be 
optically  expressed.  A  pencil  of  light 
from  the  lamp  L  (fig.  79),  passes  through 
the  lens  I,  and  then  strikes  against  a  little 

Fio.  78.  concave  mirror  fastened  to  one  prong   of 
the  fork  T.  From  this  mirror  it  is  then  reflected  to  a  similar 
mirror  attached  to  the  fork  T',  and  is  finally  received  on  the 
screen  A.  When  the  forks  are  at  rest,  only  a  spot  of  light  appears 
on  the  screen ;  but  if  one  fork  is  set  vibrating,  this  spot  lengthens 

out,  to  form  a  vertical  line  of  light.  Now  let  both  forks  vibrate 

together  with  equal  amplitudes,  and  in  the  first  place  suppose  them  to 
be  in  unison :  if  they  are  in  exactly  the  same  phase,  the  line  of  light 
will  be  twice  as  long  as  at  first ;  if  in  opposite  phase,  the  line  will 
be  reduced  to  a  spot :  in  any  intermediate  phase,  the  line  will  have 

a  length  intermediate  between  these  two  extremes.     In  the  next 
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Fig.  79. 

place,  suppose  tlie  forks  are  not  in  exact  unison ;  as  we  have  already 
seen,  they  will  be  at  one  moment  in  the  same  phase,  then  gradually 
diverge  till  m  opposite  phase,  and  again  gradually  converge  to  the 
same  phase.  The  line  of  light  will  vary  coincidentally ;  at  one 
moment  being  of  considerable  length,  then  gradually  shortening 
till  but  a  mere  spot,  and  then  lengthening  again.  The  beats,  of 
which  this  alternate  lengthening  and  shortening  is  the  optical 
expression,  will  at  the  same  time  be  heard. 

If  the  beam  of  light  in  the  above,  instead  of  falling  on  a  screen, 
be  received  on  the  revolving  mirror  of  fig.  3,  the  separate 
vibrations  will,  as  it  were,  be  visible,  and  will  appear  as  represented 
in  fig.  79  op,  in  which  the  varying  amplitude  of  the  sinuosities 
corresponds  to  the  varying  intensity  of  the  resultant  sound. 

If  no  better  apparatus  be  at  hand,  beats  may  be  studied  on  the 
pianoforte,  by  loading  one  of  the  two  wires  of  a  note  with  wax,  and 
then  striking  the  corresponding  key  ;  or  they  may  be  observed  by 
stretching  two  similar  strings  on  a  violin,  and  after  bringing  them 
into  unison,  throwing  one  more  or  less  out  of  tune  ;  but  in  these 
cases,  as  the  tones  are  compound,  the  nmtter  is  complicated  by  the 
beats  of  the  overtones. 

If  two  tuning-forks  are  nearly,  but  not  quite  in  unison,  and  the 
vibration  number  of  one  of  them  is  known,  it  is  easy  to  ascertain 
the  vibration  number  of  the  other,  by  counting  the  beats  between 
them,  provided  we  know  which  is  the  sharper  of  the  two.  For 
example,  suppose  we  have  a  standard  0  fork  producing  exactly  512 
vibrations  per  second,  and  on  sounding  it  with  another  fork,  we 
find  that  in  half  a  minute,  90  beats  are  counted.  Now  90  beats  per 
half  minute,  is  at  the  rate  of  three  beats  per  second ;  but  we  know 
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that  the  number  of  beats  generated  by  two  sounds,  is  equal  to  the 
difference  of  their  vibration  numbeis;  therefore  the  vibration 

number  of  the  fork  under  trial,  must  be  either  512  +  3  or  512  —  3; 
that  is,  either  515  or  509,  according  as  it  is  sharper  or  flatter  than 

the  standard, — a  matter,  which  the  ear  of  the  musician  can  easily 
decide. 

It  is  found  by  experience,  that  beats  which  occur  at  the  rate  of 
from  2  to  5  per  second,  are  the  most  easily  counted.  Beyond  five 
beats  in  a  second,  there  is  considerable  difficulty  in  counting,  owing 
to  their  rapidity ;  and  below  two  beats  in  a  second,  there  is  also  a 
difficulty,  owing  to  the  length  of  time  occupied  by  each  loudness. 
Por  ascertaining  the  pitch  of  instruments  in  the  way  just  described, 
cases  of  tuning-forks  are  constructed  consisting  each  of  twelve 
forks,  the  vibration  numbers  of  which  increase  by  four  vibrations 
per  second,  from  412  to  456  for  A,  and  from  500  to  544  for  C.  To 
show  the  method  of  using  them,  we  will  take  the  following  case. 
It  was  desired  to  ascertain  the  pitch  of  a  certain  piano.  In  a  pre- 

liminary trial,  by  sounding  the  C  with  each  of  the  forks,  it 
was  found  that  it  produced  with  the  536  fork,  from  2  to  3  beats  per 
second,  and  with  the  540  fork,  beats  at  a  somewhat  slower  rate. 
The  former  was  first  taken,  and  the  beats  produced  by  it  with  the 
pianoforte  C,  carefully  counted  for  30  seconds.  The  number  was 
found  to  be  75,  which  is  at  the  rate  of  ̂ -^  =  2^  beats  per  second. 
Therefore  the  vibration  number  of  the  note  in  question  was 
536  +  2^  =  538 1.  To  verify  this,  the  540  fork  was  sounded  with 
the  pianoforte  C;  44  beats  were  now  counted  in  30  seconds,  that  is 

-i^  ==  1^  beats  per  second,  nearly.  This  gives,  the  same  result  as 
before,  viz.,  540  —  1^  =  538|. 

It  is  possible,  however,  to  ascertain  the  vibration  number  of  a 
musical  sound  by  means  of  beats,  independently  of  any  previously 
ascertained  standard.  This  will  be  seen  from  the  following  con- 

siderations. Suppose  we  have  two  forks,  one  of  which  gives  the 
exact  octave  of  the  other.  Let  us  further  suppose,  that  it  is  possible 
to  count  the  number  of  beats  per  second  produced,  when  they  are 
sounded  together,  and  let  the  number  be,  say  100.  What  will  be 
the  vibration  numbers  of  the  forks  ?  Now,  in  the  first  place,  it  is 
evident  that,  whatever  they  are,  the  difference  between  them  must 
be  100 ;  since  the  number  of  beats  per  second,  produced  by  two 
sounds,  is  equal  to  the  difference  of  their  vibration  numbers.  In 
the  second  place,  the  vibration  number  of  the  higher  fork  must  be 
twice  that  of  the  lower,  since  they  are  an  octave  apart.     Thus  the 
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problem  reduces  itself  to  finding  two  numbers,  one  of  which,  is 
double  the  other,  the  difference  between  them  being  100.  Now 
200  and  100  are  the  only  numbers  which  satisfy  these  conditions, 
and  therefore  the  vibration  numbers  of  the  forks  will  be  200,  and 
100.  respectively. 

To  put  this  in  a  general  way 
Let  X  denote  the  vibration  number  of  the  lower  fork,  then  2x 

will  denote  the  vibration  number  of  the  higher  fork,  therefore  if  n 
denote  the  number  of  beats  per  second  produced  by  them 

2x  —  X  =  n 
that  is  X  =  n 

Therefore,  if  two  sounds  are  exactly  an  octave  apart,  the  number 
of  beats  they  generate  per  second,  will  be  the  vibration  number  of 
the  lower  sound. 

But  when  two  sounds,  at  the  interval  of  an  octave,  are  heard 
together,  no  beats  at  all  are  perceived.  How  is  this  difficulty  to  be 
overcome  ?  Let  us  suppose  we  have  two  forks  A  and  Z,  an  octave 
apart,  A  being  the  lower  one.  Tune  another  fork  B  slightly 
sharper  than  A,  so  that  it  produces  with  it,  not  more  than  4  beats 
per  second  ;  tune  another  fork  C  sharper  than  B,  and  making  with 
it  about  4  beats  per  second  ;  tune  another  fork  D  in  the  same 
manner,  to  beat  with  C ;  and  so  on,  till  we  get  a  fork  within  4 
beats  of  Z.  Now  count  accurately  the  number  of  beats  between 
A  and  B,  B  and  0,  C  and  D,  and  so  on  up  to  Z ;  add  these  all 
together,  and  the  total  will  evidently  be  the  number  of  beats  between 
A  and  Z. 

Instruments  constructed  on  the  above  principle  are  called 
Tonometers,  of  which  there  are  two  varieties :  the  Tuning-fork 
Tonometer  and  the  Eeed  Tonometer. 

The  Tuning-fork  Tonometer  was  invented  by  Scheibler,  who  died 
in  1837.  One  of  his  instruments,  which  still  exists,  consists  of  56 
forks,  each  of  which  produces  four  beats  per  second  with  the 
succeeding  one.  Therefore,  between  the  lowest  and  the  highest 
forks,  there  are  55  sets  of  four  beats  ;  that  is,  55  X  4  =  220,  which, 
by  the  above,  must  be  the  vibration  number  of  the  lowest  fork,  440 
being  that  of  the  higher  one. 

In  Appun's  Tonometer,  the  tuning-forks  are  replaced  by  reeds. 
Although  better  adapted  to  all  pui-poses  of  lecture  illustration  than 
the  Tuning-fork  Tonometer,  the  Eeed  Tonometer  has  two  serious 
drawbacks,  viz. :  the  reeds  do  not  retain  their  pitch  with  accuracy, 
and  their  variation  with  temperature  is  unknown. 
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The  method  of  using  the  Tonometer  is  similar  to  that  above 
described,  in  the  case  of  the  standard  forks.  In  the  experienced 

hands  of  Mr.  Ellis,  the  tuning-fork  Tonometer  has  given  results  at 
least  equal  in  accuracy  to  those  obtained  by  means  of  any  other 
counting  instrument  (see  table  on  page  39). 

Summary. 

When  two  series  of  sound  waves  of  the  same  lengths  and 
amplitudes,  traverse  simultaneously  the  same  mass  of  air: 

(1)  If  the  waves  of  the  one  series  are  in  exactly  the  same  phase 
as  those  of  the  other,  resultant  waves  are  produced  of  the 

same  length,  but  of  double  the  amplitude  ; 

(2)  If  the  waves  of  the  one  series  are  in  exactly  the  opposite 

phase  to  those  of  the  other,  the  result  is, — no  wave ; 

(3)  If  the  waves  of  the  one  series  are  neither  in  the  same  phase 
as,  nor  in  opposite  phase  to,  those  of  the  other,  the  amplitude 
of  the  resultant  waves  will  be  inteimediate  between  the  two 

limits  given  above,  viz.,  no  amplitude  at  all,  i.e.,  silence,  and 
twice  the  amplitude  of  the  constituent  waves. 

AVhen  two  simple  sounds  of  the  same  pitch  and  intensity  are 
simultaneously  produced  the  result  is 

(1)  Silence;  or 

(2)  A  sound  of  the  same  pitch  as,  but  of  four  times  the  intensity 
of,  either  ;  or 

(3)  A  sound,  intermediate  in  intensity  between  these  two 
limits, 

accordmg  as  the  corresponding  sound  waves  are  in  (1)  opposite 
phase,  (2)  the  same  phase,  or  (3)  any  relative  position  intermediate 
between  these  two. 

When  two  sounds  differing  slightly  in  pitch  are  simultaneously 

produced,  the  flow  of  sound  is  distui'bed  by  regular  recurring  throbs 
or  alternations  in  intensity,  termed  beats.  These  beats  are  due  to 

the  alternate  coincidence  and  interference  of  the  two  sj^stems  of 
waves. 

If  the  two  tones  be  of  equal  intensity,  the  maximum  intensity  of 
the  beat,  will  be  four  times  that  of  either  sound  heard  separately,  the 
minimum  intensity  being  zero. 
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The  number  of  beats  per  second,  due  to  simple  tones,  is  equal  to 
the  difference  of  their  vibration  numbers. 

This  fact  is  the  principle  of  the  Tonometer,  of  which  there  are 
two  varieties, 

(1)  The  Tuning-fork  TonomeiQT  I 

(2)  The  Eeed  Tonometer. 



IM 

CHAPTER    XIV. 

On  Dissonance. 

Having  studied,  in  the  preceding  Chapter,  the  causes  and 
characteristics  of  beats,  we  now  proceed  to  inquire  into  the  effects 
they  produce,  as  they  become  more  and  more  rapid. 

Slow  beats  in  music  are  not  altogether  unpleasant ;  in  low  tones^ 
and  in  long  sustained  chords  they  often  produce  a  solemn  effect : 
in  higher  tones,  they  impart  a  tremulous  or  agitating  expression  ; 
accordingly,  modem  organs  and  harmoniums  usually  have  a  stop> 
which,  when  drawn,  brings  into  play  a  set  of  pipes  or  reeds,  so 
tuned,  as  to  beat  with  another  set,  thus  imitating  the  trembling  of 
the  human  voice  and  of  violins. 

When,  however,  the  beats  are  more  rapid,  they  become 
unpleasant  to  the  ear.  In  studying  this  matter,  it  will  be  best  to 
begin  with  simple  tones.  Select  two  C  tuning-forks,  and  gradually 
throw  them  more  and  more  out  of  tune,  by  sticking  wax  on  the 
prongs  of  one  of  them,  as  described  in  the  last  Chapter.  Sound 
the  forks  together  after  each  addition  of  wax,  and  note  the  effect  of 
the  increasing  rapidity  of  the  beats.  It  will  be  found,  that  when 
they  number  five  or  six  per  second,  the  effect  begins  to  be 
unpleasant,  and  becomes  harsher  and  more  jarring,  as  they  grow 
more  and  more  rapid.  Of  course  the  beats  soon  become  too  rapid  to  be 
counted  by  the  unaided  ear,  but  their  rate  can  easily  be  ascertained 
by  subtracting  the  vibration  numbers  of  their  generators.  When 
the  beats  amount  to  about  32  per  second,,  though  they  are  too 
rapid  to  be  individually  discriminated,  yet  the  resultant  sound  has 
the  same  harsh  jarring  intermittent  character,  that  it  has  had  all 
along,  only  much  more  disagreeable.  The  two  tones  are  now  at 
the  interval  of  a  semitone,  about  the  worst  discord  in  music,  and  no 
one,  who  tries  the  above  experiment,  and  notes  carefully  the  effect 
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of  the  beats,  as  the  interval  between  the  forks  increases  from 
unison  to  a  semitone,  can  doubt  that  the  discord  here  arises  from 
these  beats. 

Now,  gradually  increase  the  interval  between  the  forks  still 
more ;  the  rapidity  of  the  beats  of  course  increases,  but  the 
resultant  sound  becomes  less  and  less  harsh  ;  till  finally,  when  the 
beats  number  about  78  per  second,  all  the  harshness  vanishes.  At 
this  point,  the  interval  between  the  forks  is  rather  less  than  a  mmor 
third.  The  interval  at  which  the  dissonance  thus  disappears,  haa 
been  termed  the  Beating  Distance. 

The  fact  just  alluded  to, — that  all  Discord  or  Dissonance  between 

musical  tones  arises  from  beats, — is  one  of  Helmholtz's  most 
important  discoveries.  In  order  to  thoroughly  convince  himself  of 
its  truth,  the  student  must  proceed  step  by  step.  In  the  first  place^ 
as  we  have  seen,  beats  are  reinforcements  and  diminutions  of 
intensity,  which  are  due  to  the  interference  of  two  separate  sound 
waves.  Now  this  being  the  case,  if  such  reinforcements  and 
diminutions  can  be  made  to  occur  in  the  case  of  a  single  sound, 
then,  not  only  should  beats  be  heard,  but  the  harsh  jarring  we  call 
discord,  which  is  supposed  to  be  due  to  beats,  should  be  heard  also* 

This  was  put  to  the  test  of  expeiiment  by  Helmholtz,  in  the 
following  way.  A  little  reed  pipe  was  substituted  for  the  wind 
conduit  of  the  upper  box  of  his  Syren  (see  page  33),  and  wind 
driven  through  this  reed  pipe.  The  tone  of  this  pipe  could  be 
heard  externally,  only  when  the  revolution  of  the  disc  brought  its 
holes  before  the  holes  of  the  box,  and  so  opened  an  exit  for  the  air. 
Hence,  allowing  the  disc  to  revolve,  while  air  was  being  driven 
through  the  pipe,  an  intermittent  sound  was  obtained,  which  sounded 
exactly  like  the  beats  arising  from  two  tones  sounded  at  once. 

By  means  of  a  perforated  disc  and  multiplying  wheel,  similar  to 
that  shown  in  fig.  19,  the  same  thing  may  be  still  more  easily 
demonstrated.  One  circle  of  holes  on  the  disc  is  sufficient,  but 
they  should  be  larger  than  shown  in  the  figure.  One  end  of  the 

india-i-ubber  tube  is  held  opposite  to  the  circle  of  holes,  just  as  in 
the  figure,  but  the  other  end  is  to  be  applied  to  the  ear.  On  the 
other  side  of  the  disc  and  opposite  to  the  end  of  the  india-rubber  tube, 
a  vibrating  tuning-fork  is  held,  the  necessary  intermittence  of  tone 
being  brought  about  by  the  revolution  of  the  disc. 

In  either  of  the  above  ways,  intermittent  tones  may  be  obtained, 
and  this  intermission  gives  them  all  exactly  the  same  kind  of 
roughness,  that    is  produced  by  two  tones  which  beat  rapidly 
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together.  Beats  and  intermissions  are  tlius  identical,  and  both, 
when  succeeding  each  other  fast  enough,  produce  a  harsh  discordant 
jar,  or  rattle. 

Two  questions  now  suggest  themselves ;  first,  why  should  such 

an  intei-mittent  sound — why  should  rapid  beats — be  unpleasant  ? 
and  secondly,  why  should  beats  cease  to  be  unpleasant  when  they 
become  sufficiently  rapid  ? 

With  regard  to  the  first  question,  beats  produce  intermittent 
excitement  of  certain  auditory  nerve  fibres.  Now  any  excitement 
of  a  neiTO  fibre  deadens  its  sensibility,  and  thus  during  a 
continuance  of  the  excitement,  the  excitement  itself  deadens  the 
sensibility  of  the  nerve,  and  in  this  way  protects  it  against  too  long 

and  too  violent  excitement.  But  during  an  intei-val  of  rest,  the 
sensibility  of  the  nerve  is  quickly  restored.  Therefore  if  the 
excitement  instead  of  being  continuous  is  intermittent,  the  nerve 
lias  time  to  regain  its  sensibility  more  or  less,  during  the  intervals 
of  rest ;  thus  the  excitement  acts  much  more  intensely  than  if  it 
had  been  continuous,  and  of  the  same  uniform  strength. 

In  the  analogous  case  of  light,  for  example,  every  one  must  have 
experienced  the  unpleasant  sensation  of  walking  along  the  shady 
side  of  a  high  picket  fence,  with  the  evening  sun  shining  through. 
Here  the  fibres  of  the  optic  nerve  are  alternately  excited  and  at 
rest.  During  the  short  intervals  of  rest,  the  nerve  regains  more  or 
less  its  sensibility,  and  thus  the  excitements  due  to  the  sunlight  are 
much  more  intense  than  they  would  have  been,  had  the  irritation 
been  continuous ;  for  in  this  case,  the  continuous  irritation  would 
have  produced  a  continuous  diminution  in  the  sensibility  of  the 
nerve.  It  is  precisely  the  same  cause,  which  renders  the  flickering 
of  a  gas  jet,  when  water  has  got  into  the  pipe,  so  unpleasant. 

An  intermittent  tone  is  to  the  nerves  of  hearing,  what  a  flickering 
light  is  to  the  nerves  of  sight,  or  scratching  to  the  nerves  of  touch. 
A  much  more  unpleasant  and  intense  excitement  is  produced  than 
would  be  occasioned  by  a  continuous  tone.  The  following  simple 
experiment  is  instructive  on  this  point.  Strike  a  tuning-fork  and 
hold  it  farther  and  farther  from  the  oar,  till  its  tone  can  Just  not 
be  heard.  Now  if  the  fork,  while  still  faintly  vibrating,  be 
revolved,  it  will  become  audible.  For  as  we  have  seen,  during  its 
revolution,  it  is  brought  into  positions  such,  that  it  alternately  can 
and  cannot  transmit  its  sound  to  the  ear,  and  this  alternation  of 
strength  is  immediately  perceptible  to  the  ear.  As  Helmholtz  has 
pointed  out,  this  fact  supplies  us  with  a  delicate  means  of  detecting 
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vciy  faiut  tones.  For  if  another  tone  of  about  the  same  intensity, 
but  differing  very  slightly  in  pitch,  be  sounded  with  it,  the  intensity 
of  the  resulting  sound,  as  we  saw  in  the  last  chapter,  will  alternate 

between  silence  and  four  times  the  intensity  of  the  original  sound, 
and  this  increase  of  intensity  will  combine  with  the  alternation  to 
render  it  audible. 

With  regard  to  the  second  question,  "  why  should  the  beats  cease 

to  be  unpleasant,  when  they  become  sufficiently  rapid ''  ?  we  must 
again  have  recourse  to  the  analogous  phenomenon  of  light.  If  a 
carriage  wheel  be  revolved  slowly,  we  can  sec  each  of  the  spoken 

separately  ;  on  revolving  more  quickly,  they  merge  together  into  a 
shadowy  circle.  Again  the  singing  flame  of  fig.  3  is  all  but 
extinguished  two  or  three  hundred  times  per  second,  but  to  the 
unaided  eye  it  appears  stationary.  When  the  alternations  between 

irritation  and  rest  follow  one  another  too  quickly,  they  cease  to  be 
perceived,  and  the  sensation  becomes  continuous.  So  in  the  case  of 
sound,  after  the  exciting  cause  has  ceased  to  act,  a  certain  minute 
iLterval  of  time  is  necessary  for  the  excited  nerve  to  lose  its 

excitement ;  and,  when  the  beats  succeed  one  another  so  rapidly, 
that  there  is  not  this  interval  between  them,  then  the  cessations 

and  reinforcements,  that  is,  the  beats,  become  imperceptible. 

In  our  first  experiment,  we  began  with  two  C  forks  in  unison, 
and  on  gradually  increasing  the  interval  between  them,  we  found 
that  the  harshest  discord  was  obtained,  when  they  produced  about 
32  beats  per  second,  and  that,  when  their  vibration  numbers 

differed  by  about  78,  the  two  tones  were  just  beyond  beating 
distance :  that  is  the  78  beats  so  coalesced  as  to  be  imperceptible. 

Now  these  numerical  results  apply  only  to  this  region  of  pitch.  If 
we  select  another  pair  of  tones  in  a  different  part  of  the  musical 
realm,  the  general  result  will  be  the  same,  but  the  numbers  will  not 
be  those  above  :  that  is  to  say,  the  discord  will  become  harsher  and 

harsher  as  the  beats  increase  up  to  a  certain  point,  but  the  number 

of  beats  per  second  at  this  point  will  not  be  32  ;  and  similarly,  the 
discord  will  become  less  and  less  after  this,  and  finally  vanish,  but 
the  number  of  boats  per  second  at  the  beating  distance,  will  not 
be  78. 

The  harshness  of  a  dissonance  therefore,  does  not  depend  upon 
the  rapidity  of  beats  alone :  it  depends  also  upon  the  position  of 
the  beating  tones  in  the  musical  scale.  This  will  be  evident  from 

the  following  examples — 
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Interval. Tones. ViB.  Nos. 
No.  OF  Beats 

PER  SEC. 

Semitone   

(CI
 

(512 

(480 

32 

Tone   

IS 
(  288 
(  256 

32 

Major  Third 

f§ 
(  160 (  128 

32 

Fifth   

(?; 
(96 

(64 

32 

The  number  of  beats  produced  in  each  of  these  four  intervals  is 
32  per  second,  and  therefore  if  harshness  of  discord  depended  on 
rapidity  of  beats  alone,  these  intervals  should  be  equally  discordant. 
But  as  every  one  knows,  they  are  not ;  in  fact,  if,  as  we  suppose, 
the  tones  are  simple,  the  last  two  will  have  no  trace  of  harshness 
whatever.  Thus  the  number  of  beats  per  second,  necessary  to 
produce  a  certain  degree  of  discord,  varies  in  different  parts  of  the 
«cale  of  musical  pitch,  diminishing  as  we  descend,  and  increasing 
as  we  ascend.  Similarly  the  Beating  Distance  becomes  greater,  as 
we  get  lower  in  pitch,  and  contracts  as  we  go  higher. 

The  following  are  Mayer's  determinations  of  the  beating 
■distance  between  Simple  Tones,  in  various  parts  of  the  musical 
scale.  The  first  column  gives  the  name  of  the  Simple  Tone ;  the 
second,  its  vibration  number;  the  third,  the  number  of  beats 
generated  between  the  simple  tone  given  in  the  first  column,  and 
another  simple  tone  at  Beating  Distance ;  the  fourth,  the  Beating 

Distance  approximately  expressed  in  musical  language,— in  other 
words,  this  column  shows  the  smallest  consonant  interval  in  the 
region  of  the  tone  given  in  the  first  column.  It  is  difficult  to  fix  the 
points  of  greatest  discord,  but  we  should  probably  be  not  far  wrong 
in  placing  it  at  somewhat  less  than  half  the  Beating  Distance ;  or 
throughout  the  greater  part  of  the  scale,  at  about  a  semitone. 
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TONK. ViB.  No. 
Beating 

DiST. 
Nearest  Consonant  Interval. Duration  of 

Sensation. 

c, 
64 16 Major  3rd. -Jg-  of  a  sec. 

c, 
128 26 Minor  3rd. 

aV           »» 

0 256 47 
Minor  3rd,  less  \  Semitone. 

if    .. 

G 384 60 
Fo              >> 

c 512 78 Minor  3rd,  less  ̂   Semitone. y'e         .. 

E' 

640 90 
grV        »> 

G' 

768 109 

t4?     »» 

CP 
1024 135 Tone  or  Second 

135             >» 

Two  other  points  may  be  noticed  before  leaving  this  table.  In  the 

first  place,  it  appears,  that  a  very  high  number  of  beats — more 
than  100  per  second — may  be  appreciable  to  the  ear  without 
coalescing.  In  order  to  convince  oneself  that  this  is  true,  it  is 
only  necessary  to  hear  the  following  four  intervals  successively 
between  simple  tones,  and  note  that,  though  it  soon  becomes 
impossible  to  discriminate  the  separate  beats,  yet,  the  harsh  jarring 
effect  is  the  same  throughout. 
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Simple  Tones. YiBRATiox  Nos.     1    Beats  per  Sec. 

IS, 
C256 

f  240 

16 

IB 

C512 

(480 

32 

^ 1024                                  ., 

I    960                                   ̂ ^ 

C3 

;2048 

(  1920 

128 

Secondly,  the  time  during  which,  a  sensation  of  sound  will  endure, 
after  its  cause  has  ceased  to  act,  varies  for  sounds  of  low  and  high 
pitch.  For  since  16  beats  per  second  in  the  region  of  C,  coalesce, 
it  is  only  reasonable  to  conclude  that  the  sensation  of  each  of 

these  beats  remains  for  -J^j-  of  a  second.  Similarly  the  duration  of 
sound  in  the  region  of  C|  is  ̂l.  of  a  second,  and  so  on,  as  given  in 
the  last  column  of  the  above  table.  If  this  conclusion  be  correct, 
it  seems  to  afford  an  explanation  of  the  fact,  that  the  Beating 
Distance  becomes  greater  as  we  descend  in  the  scale. 

To  sum  up,  then,  as  far  as  we  have  gone :  Dissonance  between 
two  simple  tones,  is  due  to  Beats :  taking  two  Simple  Tones  in 
unison  with  one  another,  and  gradually  altering  the  pitch  of  one  of 
them,  the  harshness  of  the  dissonance  increases  with  the  rapidity  of 
the  beats,  up  to  a  certain  point ;  beyond  that  point  it  diminishes, 
until  finally,  all  harshness— all  dissonance — vanishes  when  the  two 
tones  are  at  a  certain  distance  apart :  and  finally,  the  number  of 
beats  per  second  which  produces  the  greatest  dissonance,  and  the 
Beating  Distance  both  vary  as  we  ascend  and  descend  in  the 
musical  scale. 

It  would  seem  from  the  above,  that  however  much  wo  widen  the 
interval  between  two  simple  tones  beyond  the  beating  distance,  they 
never  again  become  dissonant,  for  being  now  beyond  that  distance, 
it  is  plain  they  can  no  longer  beat.  On  putting  the  matter  to  the 
test  of  experiment,  however,  it  is  found  that  this  is  not  the  case  ; 
there  are  certain  intervals,  beyond  the  beating  distance,  which  do 
beat.     For  example,  if  two  forks  be  tuned,  one  to  C,  and  the  other 
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to  B,  or  to  C'Jf  or  thereabouts,  beats  will  be  heard  when  they  are 
sounded  together,  although  they  are  far  beyond  the  Beating 
Distance. 

This  fact,  though  at  first  sight  inconsistent  with  the  foregoing,  is, 

in  reality,  not  so ;  for  the  beats  in  question  are  not  produced  by 
the  two  simple  tones,  but  by  one  of  them  and  a  differential  tone 

generated  by  them.     The  following  figures  show  this — 

B   =   480  \  /    G%  =  540 
C    =   256  J  I    C     =   256 

=    you  \ 
=   256  J 

or 
Differential  Tone,  224  \  (  284  Diffl.  Tone, 

and  256  —  224  =  32  beats.  I  \  and  284  —  256  =  28  beats. 

C  and  B  generate  a  Differential,  the  vibration  number  of  which  is 

224,  and  this  with  the  tone  C  will  produce  256  —  224  =  32  beats 

per  second ;  similarly  C  and  C'Jf  generate  the  Differential  284, 
which  with  0  gives  284  —  256  ̂ =  28  beats  per  second ;  and  on 
reference  to  the  table  on  page  159,  we  see  that  both  32  and  28 
beats  per  second,  are  well  within  beating  distance  at  this  part  of 
the  musical  scale. 

Again,  if  we  sound  together  two  forks,  one  tuned  to  C  and  the 

other  tuned  only  approximately  to  G,  beats  ma}^  be  heard,  but  only 
when  the  forks  are  vigorously  excited.     Thus  taking  C  =  256,  Q 
should  be  384  :  let  the  G  fork,  however,  be  mistuned  to  380,  then 

380  —  256  =  124  Differential  of  1st  order 

256  —  124  =  132  „  2nd     „ 

and  these  two  differential  tones  will  produce  132  —  124  =  8  beats 
per  second.  These  beats,  however,  will  be  faint,  inasmuch  as  the 
differential  tone  of  the  second  order  is  itself  very  weak. 

With  other  intervals  beyond  the  beating  distance,  no  dissonance 
will  be  heard  between  simple  tones.  Two  forks,  forming  any 

interval  between  a  minor  and  a  major  thii-d  for  example,  in  the 
middle  or  upper  part  of  the  musical  scale,  produce  no  roughness 

when  sounded  together ;  the  interval  may  sound  strange  to 
musical  ears,  but  there  is  no  trace  of  dissonance. 

To  sum  up,  therefore  :  if  the  interval  between  two  simple  tones  be 

gradually  increased  beyond  the  beating  distance,  no  roughness  or 
dissonance  will  be  heard,  till  we  are  approaching  the  Fifth ;  and 

only  then,  if  the  tones  are  sufficiently  loud  to  produce  a  Differential 

of  the  second  order :  on  still  further  widening  the  intei'val, 

beats  may  be  heard  in  the  neighboui'hood  of  the  octave,  due  to  a 
Differential  of  the  first  order. 

M 



162  HAND'BOOK  OF  ACOUSTICS, 

Thus  all  dissonance  between  simple  tones  wiU  be  found  on 
examination  to  be  due  to  beats,  generated,  either  by  the  simple 
tones  themselves,  by  one  of  the  simple  tones  and  a  Differential,  or 
by  two  Differentials. 

Before  inquiring  into  the  causes  of  dissonance 
between  Compound  Tones,  it  will  be  as  well  to 
call  to  mind  the  fact,  that  a  single  compound 
tone  may  and  often  does  contain  dissonant 
elements  in  itself.  Let  us  take  the  compound 
tone  Cj,  for  example  :  Inasmuch  as  its  funda- 

mental has  the  vibration  number  64,  the 
difference  between  the  vibration  numbers  of  any 
two  successive  partials  must  be  64.  By  reference 
to  the  accompanying  table  of  partials,  and  to  the 
table  on  page  159,  we  see  that  the  intervals 
between  the  first  7  partials  are  greater  than  the 
Beating  Distance,  but  that  the  intervals  between 
the  partials  above  the  7th  are  less  than  the 
Beating  Distance.  For,  take  the  8th  and  9th 
partials,  which  are  C  and  D'  respectively,  the 
number  of  beats  produced  by  these  two  simple 
tones  is  64  and  we  know  by  the  table  on  page  159 
that  the  number  of  beats  necessary  to  concord, 
in  this  part  of  the  musical  scale  is  78 ;  therefore 
a  certain  amount  of  roughness,  due  to  these 
64  beats  will  result.  The  dissonance  gets  worse  as  we  ascend; 
for  example,  the  number  of  beats  per  second  between  the 

15th  partial,  B',  and  the  16th,  C^,  is  of  course  64,  which  forms  a 
very  harsh  dissonance  in  this  part  of  the  scale.  As  we  have  already 
seen,  the  partials  of  the  tones  of  most  instruments,  become  weaker 
and  weaker,  the  farther  they  are  from  the  fundamental ;  so  that  in 
general,  these  very  high  partials  are  not  strong  enough  to  produce 
any  appreciable  roughness,  but  this  is  by  no  means  always  the  case. 
If  the  note  Cj  be  sounded  on  the  Harmonium  or  American  Organ, 
especially  with  such  a  stop  as  the  bassoon,  it  is  quite  easy  to  detect 
the  janing  of  these  higher  partials,  and  by  means  of  a  resonator 
tuned  to  a  note  intermediate  between  any  two  of  them,  the  beating 
of  those  two  is  perceptibly  increased.  The  same  jarring  effect  may 
be  readily  perceived  in  the  tones  of  the  Trombone  and  Trumpet ;  in 
fact,  it  is  this  beating  that  gives  to  the  tones  of  these  instruments, 
their  peculiar  penetrating  or  braying  character;  a  discontinuous 
sensation,   as  before  observed,  producing  a  much  more  intense 
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effect  than  a  continuous  one  of  equal  strength.  For  precisely 
the  same  reason,  the  tones  of  a  powerful  bass  voice  are  apt  to 
partake  of  this  strident  quality. 

Coming  now  to  the  subject  of  dissonance  between  two  compound 
tones,  we  shall  find  that  beats  may  arise  ; 

(1)  Between  the  Fundamentals  themselves  ; 
(2)  Between  the   Fundamental  of  one  Tone  and  an  overtone  of 

the  other  ; 

(3)  Between  overtones  ; 
(4)  From  the  occurrence  of  Different ials  ; 
(5)  From  the  occurrence  of  Summation  Tones, 

To  take  these  causes  of  beats  one  at  a  time  ; 

(1)  Beats  arising  between  Fundamental  Tones. 

Inasmuch  as  these  Fundamental  tones  are  simple,  all  the 
conclusions  above  as  to  simple  tones,  at  once  apply  to  them.  But 
when  such  beats  arise  between  the  fundamentals  of  two  compound 
tones,  the  dissonance  will  in  general  be  harsher,  than  between  two 

simple  tones  of  the  same  pitch,  for  in  the  former  case  each  pair  of 

overtones  may  beat  also.  Supposing  for  example,  the  two  funda- 
mentals to  be  B|  and  C,  the  following  diagram  shows  the  dissonant 

overtones. 

&c. 

Bl 

&C. 

C3
 

Fijf 

B 
G' 

C 
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The  harshness  of  the  beats  between  each  pair  of  overtones  in  the 
above,  must  be  estimated,  from  the  conclusions  we  arrived  at 
before,  in  the  case  of  simple  tones,  for  these  overtones  are  simple 
tones ;  but  in  estimating  the  total  harshness  of  the  whole 
combination,  it  should  be  remembered  that  for  ordinary  qualities  of 
tone,  the  intensity  of  the  partials  becomes  less  and  less,  as  we  go 
farther  from  the  Fundamentals  (a  fact  roughly  indicated  in  the 
above  by  the  use  of  smaller  type  for  the  upper  partials) ;  and 
therefore  the  intensity  of  the  beats  in  the  above,  will  become  less 
and  less  as  we  ascend. 

(2)  Beats  arising  hetween  the  Fundamental  of  one  tone  and  an 
overtone  of  the  other.  As  an  example,  we  may  take  the  common 
dissonance — 

4 
This  interval,  when  sounded  between  simple  tones,  is  quite  free 
from  harshness  ;  the  tones  are  far  beyond  beating  distance,  and  no 
differential  is  near  enough  to  produce  beats.  When,  however,  it  is 
sounded  between  ordinary  compound  tones,  beats  are  generated  by 
the  fundamental  f  and  the  2nd  partial  of  S|,  thus  : — 

\ 

or 

a 
\ 
F a. 

The  following  dissonances,  between  compound  tones,  although 
often  called  by  the  same  name,  are  very  different  indeed  in  their 
degree  of  dissonance. 

No.  1. No.  2. No.  3. 

\\\  \%    \{[  \l\    11  w 

No.  4. 

F' 

To  render  this  evident,  it  is  only  necessary  to  set  forth  the  partiaj* 
of  each  tone,  thus : — 
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\ 

\ 

/ 

\ 

\ 

S| 

\ 

f. 

Sz 

\ 

\ 

\ 

\ 

'•I 

Sj 

\ 

S| 

Si 

E2 

No.  1,  Pi-imary,      No.  2,  Secondary.      No.  3,  Tertiary.      No.  4,  Quartemary, 

In  setting  out  the  above,  we  do  not.  go  above  the  6th  partial, 

inasmuch  as  the  pai-tials  above  this  point  are  in  general  too  weak 
to  have  any  influence  on  the  subject  under  discussion. 

In  No.  1,  not  only  do  the  fundamentals  beat,  but  every  pair  of 
overtones  also,  while  above  the  3rd  pair,  there  is  a  perfect  galaxy  of 
dissonances.  In  No.  2,  the  Fundamentals  are  beyond  beating 
distance,  but  there  are  beats  between  one  of  them  (f  |)  and  the  let 
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overtone  of  the  other  {S|).  The  harshness  of  this  dissonance  will 

consequently  chiefly  depend  on  the  intensity  of  this  overtone,  which 
will  vary  in  different  instruments,  and  even  in  different  parts  of 
the  same  instrument.  Thus,  in  the  lower  notes  of  the  piano,  the  1st 

overtone  is  not  unfrequently  louder  than  the  fundamental  itself. 
On  other  instruments,  however,  and  in  general,  its  intensity  is  not 
so  great ;  in  a  well  bowed  violin,  for  example,  it  is  only  about  one 
fourth  as  loud.  Further,  the  beating  between  the  3rd  pair  of  partials, 
and  between  the  5th  pair  of  No.  1,  is  wanting  in  No.  2.  Thus,  on 
the  whole,  this  latter  dissonance  is  much  less  harsh  than  No.  1. 

The  dissonance  in  No.  3  is  of  a  very  mild  character,  for  the 

Fundamental  (f)  beats  only  against  the  4th  partial  (s)  and  as  a 
general  rule,  the  4th  partial  is  comparatively  weak.  In  No.  4  there 
is  no  beating  whatever,  unless  the  7th  or  8th  partial  is  audible,  and 
even  then  it  would  be  very  slight. 

The  late  Mr.  Curwen  proposed  to  distinguish  dissonances  such  as 

Nos.  1,  2,  3,  and  4  above,  by  terming  them  respectively  Primary, 
Secondary,  Tertiary,  and  Quaternary  dissonances.  Thus,  in 
Primary  dissonances  the  fundamentals  themselves  beat,  while  in 

Secondary,  Tertiary,  and  Quaternary  dissonances,  the  Fundamental 
of  the  one  tone  beats  respectively  with  the 

d'  ̂^        2nd,  4th,  and  8th  partials  of  the  other. 
The  above  conclusions  must  of  course  be 

modified  for  the  tones  of  instruments,  which 

have  not  the  complete  series  of  partials  up  to 
the  6th.  For  example,  the  tones  of  stopped 

organ  pipes,  and  of  clarionets  are  wanting  in 
the  even  partials,  and  therefore  a  secondary 
dissonance  between  such  tones,  is  of  a  very 

mild  character  indeed,  the  only  beating  which 

occurs,  arising  from  a  5th  and  a  third  partial, 
as  shown  in  the  accompanying  sketch. 

(3)  Beats  between  the  overtones  of  Compound 
[  Tones.  In  studying  these  beats,  we  shall  for 

the  reasons  stated  above,  take  into  considera- 
tion, the  first  six,  and  only  the  first  six 

partials;  and  the  student  must  continually 
bear  in  mind  the  fact,  that,  in  general,  the 

intensity  of  these  partials  rapidly  diminishes. 

as  we  go  farther  and  farther  from  the  funda- 
mental. 

V     t 

IV 

^ 

m 
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If  we  limit  ourselves  to  intervals  not  greater  than  an  octave,  we 
shall  find,  that  the  only  interval  entirely  free  from  these  partial 
beats,  is  the  Octave  itself,  thus  : — 

d'  d' 

d     a 

In  all  intervals  smaller  than  the  Octave,  it  will  be  found  that  two 
or  more  of  the  first  six  partials  beat  with  one  another.  To  take  a 
couple  of  examples :  In  the  Perfect  Fifth  a  3rd  partial  beats  against 
4th  and  5th  partials  ;  and  in  the  Diminished  Fifth  2nd,  3rd  and  4th 
partials  come  within  beating  distance  of  3rd,  4th,  5th  and  6th.; 
thus : — 
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\ 

/ 

S  8 

„/ 

i^ fe 

f. 

Perfect  5th Diminished  5th 

As  other  examples  we  may  take  the  interval  J  ge  or  |  ^  j,  and  its  in- 

version \  J®'  or  j  c*'.  It  will  be  more  convenient  in  this  case  to 
give  the  vibration  numbers  of  the  partials,  rather  than  to  express 
them  in  musical  notation.  Taking  C  or  d  =  256,  the  vibration 
number  of  Gjfi  or  sei  =  200,  and  the  partials  are  as  follows : 

Partials  of  C  =  256  ,  512  ,  768  ,  1024  ,  1280 
„     Gjf,  =  200  ,  400  ,  600  ,  800  ,  1000  ,  1200 

32 

24 

80 

ials  of  G^i  = 200 
400  , 

600 800 

C,  =  128 
,  256 

384  , 

512 
,  640 

768 
16 

40 
32 
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On  reference  to  the  table  on  page  159,  it  will  be  found,  that  the 

beats  that  are  not  calculated  above,  are  beyond  beating  distance ; 
but  the  32,  24,  and  80  beats  per  second  of  the  first  interval,  and  the 

16,  40,  and  32  of  the  second,  form  very  harsh  dissonances ;  and 
moreover  in  the  second  interval,  the  16  beats  per  second  will  usually 
be  very  prominent,  as  they  are  between  a  2nd  and  a  3rd  partial. 

The  Interval  \  ̂®'  or  1  ̂'  and  its  inversion  j  ̂\  or  !  S  are  of 
frequent  use  in  music.  Taking  G^fi  =  200  as  before,  the  vibration 
number  of  P  will  be  170§  ;  therefore 

Partials  of  Git,  =  200     ,  400     ,  600     ,  800     ,  1000 

„  F,  =  170§  ,  341J  ,  512  ,  682f      853^  ,  1024 

_29|     _58|  _82|      _53^  24 

Partials  of  F,  =  170|  ,  341^  ,  512    ,    682^ 
„      G;;2  =  100    ,      200    ,  300     ,  400  ,  500    ,    600 

29  :\      _41J  __2L         82§ 

From  the  table  on  page  159  we  see  that  the  29  J,  58§,  and  82§  beats 
per  second  are  slightly  within  or  just  on  the  verge  of  the  beating 
distance.  In  the  first  Interval,  the  53^  beats  per  second  will  produce 

a  harsh  discord,  as  will  also  the  24  per  second,  though  as  they  only 
arise  between  soft  5th  and  6th  partials,  they  have  no  very  great 
intensity.  The  inversion  is  the  worse  of  the  two,  the  41^  beats  per 

second  between  a  3rd  and  a  2nd  partial,  forming  a  bad  and  some- 
what prominent  dissonance,  which  is  made  still  worse  by  the  12  and 

and  82§  beats  per  second  higher  up. 

As  already  remarked,  the  above  results  must  be  modified  for 
Compound  Tones,  which  do  not  possess  all  the  first  six  partials. 

(4)  Beats  arising  hetween  Compound  Tones,  through  the  occurrence 

of  Differentials.  The  Fundamentals  being  Simple  Tones,  the  con- 
clusions we  arrived  at  concerning  the  beats  due  to  the  Differentials, 

generated  by  simple  tones,  in  the  former  part  of  this  chapter,  at 
once  apply  to  them.  It  only  remains  to  ascertain  the  effects,  due 
to  the  Differentials,  generated  by  the  Overtones. 

Differential  Tones  are  only  produced  when  the  generators  are 

pretty  loud,  therefore  we  shall  not  go  beyond  the  2nd  or  3rd  partial, 
as  those  above  rarely  have  any  considerable  intensity.  Moreover 
it  will  not  be  necessary  to  consider  any  differentials  except  those  of 
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the  I  st  order ;  differentials  of  the  2nd  order  seldom  or  never  occur- 
ing  between  overtones.  Let  us  consider  the  differentials  of  the  1  st 
order  generated  between  the  partials  of  two  compound  tones,  the 
fundamentals  of  which  have,  as  we  will  suppose,  the  vibration 
numbers  200  and  304.  Then  the  numbers  in  the  first  horizontal 

line  of  the  following  table  are  the  parcials  of  the  former  tone,  and 
those  in  the  first  vertical  column  those  of  the  latter.  At  their 
intersections  are  found  the  differences  of  these  numbers ;  that  is,, 
the  vibration  numbers  of  the  differentials  due  to  them. 

200 400 600 

304 
608 

104 
408 

96 
208 

296 

8 

If  we  arrange  these  tones  in  the  order  of  their  pitch,  omitting  tho 
8,  which  of  course  produces  no  tone  at  all,  we  have  the  groups : — 

104 208 304 408 

96 200 296 400 

8 8 8 8 

The  difference  between  each  pair  is  8,  and  this  is  the  only  number 
of  beats  per  second,  which  will  be  produced  bj'  all  these  differential 
tones ;  for  the  difference  between  any  other  two  of  the  above 
numbers,  gives  too  great  a  number  of  beats  per  second  to  be 
perceptible  at  the  pitch  of  the  tones  that  produce  them. 

Now  let  us  ascertain  the  number  of  beats  per  second  that  will  be 
generated  by  direct  action  between  these  same  partials  : 

Partials  of  lower  tone    200 

,,       higher   „ 

Beats  per  second 

Ninety-six  beats  per  second,  at  the  pitch  of  400,  is  far  beyond 
beating  distance  ;  8  beats  per  second  therefore  is  the  number  due 
to  the  direct  action  of  overtones,  that  is,  the  same  number  which 
we  found  to  arise  from  the  action  of  the  differentials.  A  like  result 
will  be  obtained  whatever  numbers  are  selected  for  the  funda- 

mentals, so  that  in  general,  •*  dissonance  due  to  combination  tone& 

400 600 

304 608 

96 8 
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produced  between  overtones,  never  exists,  except  where  it  is  already 

present  by  virtue  of  direct  action  among  the  overtones  themselves." 
Thus  we  may  pass  on  to  the  last  cause  of  beats  between  compound 

tones,  viz : — 

(5)  Beats  due  to  Summation  Tones.  Summation  Tones,  though 
certainly  not  very  loud,  are  much  louder  than  they  are  commonly 

suppowoed  to  be.  On  the  Harmonium  and  American  Organ, 

Summation  Tones,  generated  by  any  pair  of  tones  on  the  low^er 
half  of  the  key-board,  may  be  readily  heard  without  the  use  of 
resonators,  and  therefore  cannot  but  have  some  effect  on  the  result- 

ing sound. 

Erom  the  table  at  the  end  of  Chap.  XII,  page  134,  we  see  that  the 

fundamentals  j  d,  generate  the  Summation  Tone  (s)  which  coincides 
with  the  3rd  partial  of  the  lower  tone,  so  that  in  the  case  of  the 
Octave,  no  new  element  is  introduced. 

In  the  Fifth  J  ||,  the  Summation  Tone  (pi)  is  a  new  tone  introduced 
between  the  2nd  and  3rd  partials  of  the  (d|),  but  it  forms  no 
dissonance  with  them. 

In  the  Fourth  |  g,,  the  Summation  Tone  (approximately  ta) 
comes  very  near  the  Beating  Distance  with  the  2nd  partial  of  d. 

For,  taking  d  =  400,  then  S|  =  300,  the  Summation  lone  =  300 

+  400  =  700,  and  2nd  partial  of  d'  =  800;  therefore  the  Summation 

Tone  and  (d')  will  produce  800  —  700  =:  100  beats  per  second,  which, 
as  may  be  seen  from  the  table  on  page  159,  is  just  beyond  beating 
distance  at  this  pitch. 

In  the  Major  Third  )  ̂f  ,  the  Summation  Tone  (r)  will  dissonate 
with  the  2nd  partials  (d)  and  (n)  of  both  tones ;  the  same  is  true  in 
the  case  of  the  Minor  Third,  but  the  dissonance  is  harsher:  for 

take  S|  =  300;  then  m  =  250,  the  Summation  Tone  is  300  +  250 

=  550,  and  the  2nd  partials  (s)  and  (pi)  are  600  and  500  respectively. 

Thus  the  number  of  beats  per  second  is  600  —  550  =  50,  and  550 
—  500  =  50,  which,  at  this  pitch,  is  less  than  the  number  due  to  the 
whole  tone. 

In  the  Major  Sixth,  j  ̂\ ,  the  Summation  Tone  (f )  dissonates  at  the 
mterval  of  a  tone,  with  the  3rd  partial  of  the  (d|).  The  Minor 

Sixth,  )  jxx.,,  is  better  in  this  respect,  for  take  d  =  400,  then  pii  = 
250,  Summation  Tone  =  650,  which  with  the  3rd  partial  t  (=  750) 

will  produce  750  —  650  =  100  beats  per  second,  which  at  this  pitch 
is  only  just  on  the  borders  of  the  Beating  Distance. 
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The  Summation  Tone,  when  present,  renders  a  primary  dissonance 
between  Compound  Tones  harsher  than  it  otherwise  would  be. 

Take  j  5'i  ̂̂ ^  example  :  let  d|  =  80  then  n  =  90  and  the  Summation 
Tone  will  be  80  +  90  =  170,  a  tone  about  midway  between  the  2nd 

partials,  d  (=  160)  and  r  (=  180). 

Summary. 

Beats  are  the  source  of  all  discord  in  music. 

Starting  with  two  simple  tones  in  unison ;  if  one  of  them  be  put 
slightly  out  of  tune,  slow  beats  will  be  heard,  which  are  not  very 

unpleasant,  as  long  as  they  do  not  exceed  one  or  two  per  second. 
On  increasing  the  interval  between  the  two  tones,  the  beats  gradually 
become  more  and  more  rapid,  and  at  length  form  a  harsh  dissonance. 

If  this  interval  be  gi'adually  increased,  a  point  is  finally  reached, 
where  all  dissonance  vanishes.  The  interval  at  which  the  dissonance 

just  disappears,  is  termed  the  Beating  Distance. 

The  harshness  of  any  pai-ticular  dissonance,  depends  partly  upon 
(1)  the  rapidity  of  the  heats,  and  partly  upon 

(2)  the  region  of  Pitch  in  which  the  dissonance  lies. 

Similarly,    the  Beating  Distance  for  Simple   Tones  varies  in 

different  parts  of  the  realm  of  pitch,  from  a  'Tone  at  C-  =  1024  to  a 
Major  Third  at  Cj  =  64. 

Dissonance  may  arise  between  Simple  Tones  beyond  Beating 
Distance,  from  the  occurrence  of  Diffneniials. 

A  Compound  Tone  may  be  dissonant  or  harsh  in  itself,  if  it 

contain  very  high  and  loud  partials. 
Dissonance  between  Compound  Tones  may  arise, 

(1)  From  beats  between  fundamentals, 

(2)  ,,  ,,  the  fundamental  of  one  tone  and  an 
overtone  of  the  other, 

(3)  From  beats  between  overtones  only, 

(4)  From  beats  due  to  Differential  I'oncs, 
(5)  „         ,,       ,,       Summation  Tones. 
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CHAPTER    XV. 

The  Definition  of  the  Consonant  Intervals. 

We  have  seen  in  Chap.  Y,  how,  by  means  of  the  Double  Syren,  it 
may  be  proved,  that,  for  two  sounds  to  be  at  the  exact  interval 
given  in  the  first  column  below,  their  vibration  numbers  must  be  in 
the  exact  ratio  of  the  numbers  given  in  the  second  column. 

Interval.  Eatio. 

Octave   2:1 
Fifth           3:2 
Fourth   4:3 

Major  Third        ..  ..     5:4 
Minor  Third        ..  ..     6:5 
&c.  &c. 

If  the  vibration  numbers  are  not  in  the  exact  ratio  given  above,  the 
interval  will  be  perceptibly  out  of  tune.  This  fact  had  been 
ascertained  long  before  the  instrument  just  referred  to  was 
invented,  by  the  actual  counting  of  the  vibration  numbers. 

Ingenious,  but  unsatisfactory  theories,  of  a  more  or  less  meta- 
physical nature  (among  which,  that  of  Euler  held  sway  for  many 

years),  were  devised  to  account  for  this  remarkable  fact.  Its  true 
explanation,  as  given  below,  is  due  to  Helmholtz. 
We  commence  as  usual  with  Simple  Tones,  and  first  with  the 

Octave.  Let  two  Simple  Tones  be  sounded  together,  the  vibration 
numbers  of  which  are  in  the  ratio  of  2  :  1,  say  200  and  100 
respectively.  They  will  generate  a  Differential  Tone,  the  vibration 
number  of  which  will  be  200  —  100  =  100,  which  Differential 
Tone  will  therefore  coalesce  and  be  indistinguishable  from  the 
lower  of  the  two  Simple  Tones.  This  identity  in  pitch,  of  the 
Differential,  and  the  lower  of  the  Simple  Tones  will  always  occur, 
provided  the  ratio  of  the  two  tones  is  as  2  :  1 ;  for 

let  2n  be  the  vibration  number  of  the  upper  tone, 
then  w  will  be         ,,  ,,  ,,      lower     ,, 

consequently  2w  —  «  =  n  ,,  „  ,,     Differential    „ 
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11,  however,  the  exact  ratio  be  not  preserved,  the  lower  tone  and  the 
Differential  will  not  coincide,  and  beats  will  be  heard  between  them. 
For  example,  let  the  vibration  numbers  of  the  two  tones  be  200 
and  99  respectively ;  then 

Vib.  No.  of  upper  tone  =  200 

„        ,,    lower    ,,     =    99 

„        „    Diffl.     „     =101 
and  therefore  101  —  99  =  2  beats  per  second  will  be  heard. 

We  might  therefore  define  an  Octave  between  two  Simple  Tones, 
as  that  Interval  at  which  the  Differential  generated  by  them 
coincides  in  pitch  with  the  lower  of  the  two  tones  ;  and  we  see  that 
this  perfect  coincidence  can  only  occur,  when  the  ratio  between  the 
vibration  numbers  of  the  two  tones  is  exactly  2:1. 

In  the  example  given  above,  if  we  had  taken  200  and  98  as  the 
respective  vibration  numbers,  that  of  the  Differential  would  have 

been  200  —  98  =  102,  which  would  have  given  4  beats  per  second 
with  the  lower  tone ;  from  which  it  is  evident,  that  the  more  the 
interval  is  out  of  tune,  the  greater  is  the  number  of  beats  produced. 
Thus  in  order  to  tune  two  Simple  Tones  to  an  exact  Octave,  after 
tuning  them  approximately,  one  of  them  must  be  sharpened  or 
flattened  more  and  more,  till  the  beats  becoming  less  and  less, 
finally  vanish.  This  is  an  entirely  mechanical  operation  and  does 
not  even  need  a  musical  ear.  For  suppose  two  forks  give  a  false 
octave,  producing  beats,  and  it  is  required  to  tune  the  upper  one  to 
a  true  octave  with  the  lower.  Sharpen  the  former  slightly  and 
«ound  them  again ;  if  the  beats  are  more  rapid  than  before,  then 
the  higher  fork  was  already  too  sharp  and  must  be  flattened 
gradually  till  the  beats  disappear ;  if  on  the  other  hand  they  are 
slower,  the  fork  is  too  flat,  and  must  be  sharpened  in  a  similar 
manner. 

Fifth.  Let  3n  and  2n  be  the  vibration  numbers  of  two  Simple 
Tones  at  this  interval.     Then 

3w  —  2n  =  n   vib.  no.  of  Differential  of  1st  order. 

and  2w  —  n  =  n....         ,,  ,,  ,,       2nd      ,, 
Thus  a  Fifth  between  Simple  Tones  is  defined  by  the  coincidence  of 
Differentials  of  the  1st  and  2nd  order;  and  this  coincidence  can 
evidently  only  occur,  when  the  ratio  of  the  vibration  numbers  of 
the  Simple  Tones  is  as  3  :  2.  Differentials  of  the  2nd  order  are, 
however,  generally  weak,  so  that  this  interval  between  Simple  Tones 
is  by  no  means  well  defined. 

! 
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If  the  ratio  is  not  exactly  that  of  3  :  2,  beats  are  generated. 
Eor  instance,  let  the  vibration  numbers  of  the  two  tones  be  300 

and  201  respectively,  then 

300  —  201  =    99     . .     Differential  of  1st  order. 

201—    99=102     ..  „  2nd     ,, 

102  —  99  =  3  beats  per  second  being  produced.  The  more  the 
tones  are  out  of  tune,  the  greater  the  rapidity  of  the  beats;  so  that 
to  tune  the  interval,  one  tone  must  be  sharpened  or  flattened 

gradually,  as  the  rapidity  ot  the  beats  decreases,  until  they  vanish 
altogether. 

Fourth.  Let  4w  and  3w  be  the  vibration  numbers  of  two  Simple 
Tones  at  this  interval.     Then 

4w  —  'dn  =z  n     . .     vib.  no.  of  Differential  of  1st  order 
Sn  —  n  =  2n     ..  ,,  ,,  ,,       2nd     ,, 

3rd      ,, An  —  2n  =  2n  ) 

2n  —    n  =    n  )  '  ' 

A  Fourth  between  Simple  Tones,  therefore,  is  only  defined  by  the 
coincidence  of  Differentials  of  the  1st  and  3rd,  and  of  the  2nd  and 

3rd  order.  Inasmuch,  however,  as  a  3rd  Differential  can  only  be 
heard  under  extremely  favourable  circumstances,  this  interval  can 
scarcely  be  said  to  be  defined  at  all.  This  is  still  more  the  case 

with  the  Thirds,  the  definition  of  which,  in  the  case  of  Simple 

Tones,  depends  upon  the  existence  of  Differentials  of  the  4th  order. 
Accordingly  it  is  found,  as  stated  before,  that  in  the  case  of  Simple 

Tones,  intervals  of  any  magnitude  intermediate  between  a  Minor 
Third  and  a  Fourth,  are  usually  of  equal  smoothness.  For  the 
same  reason,  it  is  impossible  without  extraneous  aid  to  tune  two 
Simple  Tones  to  the  exact  interval  of  a  Third,  either  Major  or 
Minor  ;  there  is  no  check  :  they  have  no  definition. 

If,  however,  more  than  two  Simple  tones  be  employed,  it  becomes 
easy  to  tune  these  intervals.  Indeed,  it  is  better  to  tune  the  Fifth 
also  by  the  aid  of  a  third  Tone ;  for,  as  we  have  seen,  the  interval 

of  the  Fifth  alone,  is  only  guarded  by  a  Differential  of  the  2nd 
order ;  while  if  the  Octave  of  the  lower  tone  be  present,  a 
Differential  of  the  1st  order  becomes  available.  Suppose  for  example 

the  vibration  numbers  of  three  Simple  Tones  be  200,  301,  and  400 

respectively,  the  5th,  301,  being  mistuned,  then 

301  —  200  =  101     . .     Differential  of  1st  order, 

400  —  301=    99     ..  „  „      1st     „ 

101  —  99  =  2  beats  per  second  being  thus  produced.    Thus  by 
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flattening  the  middle  note,  till  these  beats  vanish,  we  may  obtain  a 
perfect  fifth. 

Similarly,  to  rectify  a  mistuned  Fourth,  301  and  400,  for  example, 
we  may  take  a  tone,  200,  an  octave  below  the  higher  one,  and 
proceed  as  in  the  above  case. 

Again,  in  the  case  of  a  false  Major  Third,  say  400  and  501,  tune 
a  Simple  Tone  600  a  perfect  Fifth  from  the  lower  tone.     Then 

501  —  400  =  101     . .     Differential  of  1st  order, 
600  —  501  =    99     . .  „  ,,      1st     ,, 

101  —  99  =  2  beats  being  heard  between  Differentials  of  1st  order. 
Tune  as  before  till  the  beats  disappear. 

Similarly  in  the  case  of  the  mistuned  Minor  Third,  600  and  501, 
take  a  third  tone  400,  a  true  Fifth  below  the  higher  tone,  and 
proceed  as  above. 

We  come  now  to  the  definition  of  Intervals  between  Compound 
Tones,  and  in  the  first  place  we  shall  assume  the  Compound  Tones 
in  question  to  be  such  as  are  produced  by  the  Human  Voice, 
Harmonium,  Piano,  and  stringed  instruments  in  general ;  that  is 
to  say,  we  shall  suppose  them  to  consist  of,  at  least,  the  first 
six  partials. 

Octave.  Let  the  vibration  numbers  of  the  fundamentals  of  two 

Compound  Tones,  at  the  interval  of  an  octave,  be  n  and  2n 
respectively.  Then  the  2nd  partial  of  the  former  will  be  2n  which 
will  thus  coincide  with  the  other  fundamental;  or,  in  musical 
language 

2nd  partial . .  d'   d*  •  •  Fundamental. 

Fundamental . .  d 

If  the  ratio  of  the  vibration  numbers  be  not  exactly  as  2  :  1,  beats 

will  be  heard  between  the  2nd  partial  of  one  tone  and  the  funda- 
mental of  the  other.     Suppose,  for  example,  that  the  vibration 

numbers  are  200  and  99.     Then 

2nd  partial . .  198   200 . .  Fundamental 

Fundamental . .  99 

and  thus  200  —  198  =  2  beats  per  second  will  be  heard. 
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Inasmuch  as  these  Fundamentals  are  Simple  Tones,  all  that  has 
been  said  above  about  the  latter  apply  to  the  former ;  moreover,  it 
will  be  noted,  that  in  the  case  just  taken,  the  number  of  beats  due 
to  the  2nd  partial,  viz.  2,  is  the  same  as  that  due  to  the  Combination 
Tone  of  the  1st  order  (see  page  174),  and  it  is  evident  that  this  must 
always  be  the  case. 

An  Octave  between  Compound  Tones,  therefore  is  defined, 

1st,  by  the  coincidence  of  the  Differential  Tone,  generated 
between  their  two  Fundamentals,  with  the  lower  of  the 
Fundamentals;  and 

2nd,  by  the  coincidence  of  one  of  the  Fundamental  Tones  with 
the  2nd  partial  of  the  other. 

^liese  coincidences  it  is  plain  can  only  occur  when  the  vibration 
r  ambers  of  the  Fundamentals  are  in  the  exact  ratio  of  2  :  1. 

Consequently,  this  explains  why  this  exact  ratio  is  necessary  to  the 
perfection  of  this  interval. 

To  tune  the  Octave  is  thus  a  very  easy  matter:  the  mere 
mechanical  process,  of  altering  the  pitch  of  one  tone,  till  all  beats 
vanish.  As  this  interval  is  so  well  defined,  great  accuracy  in  its 
tuning  is  necessary,  the  slightest  error  becoming  evident  to  the  ear 
in  the  form  of  beats. 

Fifth.  Let  the  vibration  numbers  of  two  Compound  Tones  at 
this  interval  be  3n  and  2n  respectively.     Then 

3rd  partial   6n   6«. . .  .2nd  partial 

2nd      „      ....4n 
3n. . . . Fundamental 

Fundamental   2n 

the  2nd  partial  of  the  former  will  exactly  coincide  in  pitch  with  the 
3rd  of  the  latter ;  or  musically 
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3rd  partial   s   ■   s   2nd  partial 

2iid        d 

S   Fundamental 

Fundamental   di 

A  Fifth  between  Compound  Tones,  therefore,  though  also  guarded 
by  Differentials,  is  chiefly  defined  by  the  coincidence  of  the  3rd 
partial  of  the  lower,  with  the  2nd  of  the  upper  tone,  and  this  coin- 

cidence can  evidently  only  happen,  when  the  vibration  numbers  of 
the  Fundamentals  are  in  the  ratio  of  2  :  3.  If  the  vibration 

numbers  vary  from  this  ratio,  beats  will  be  heard  between  these 
partials.  For  example,  let  the  vibration  numbers  be  201  and  300 
respectively,  then 

3rd  partial.. ..  603- 

2nd 

-600  ....  2nd  partial 

..402 

300   Fundamental 

Fundamental   201 

and  603  —  600  =  3  beats  per  second  will  be  heard.  To  tune  a  false 
Fifth,  therefore,  one  of  the  tones  must  be  altered,  till  these  beats 
vanish. 

Inasmuch  as  the  definition  of  a  Fifth  depends  upon  the 
coincidence  of  2nd  and  3rd  partials,  while  the  definition  of  an 
Octave  depends  upon  that  of  1st  and  2nd  partials,  we  see  that  beats 
from  a  mistuned  Fifth  will  not  usually  be  so  powerful  as  those 

from  a  mistuned  Octave ;  that  is  to  say,  the  same  rigorous  exacti- 
tude in  tuning,  which  the  octave  demands,  is  not  so  essential  in  the 

case  of  the  Fifth.  As  an  illustration  of  this  fact,  it  may  be 
mentioned,  that  while  the  Octave  is  preserved  intact,  in  all  systems 
of  temperament,  the  Fifth  is  always  more  or  less  tampered  with. 
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Fourth.  Let  the  vibration  numbers  of  two  Compound  Tones  at 
this  interval  be  3«.  and  4n  respectively.  Then,  tlie  4th  partial  of 
the  former  will  exactly  coincide  with  the  3rd  partial  of  the  latter, 
thus, 

4th  partial ....  1271 

3rd      ,,       . . . .  0« 

2nd      „         Cui 

Fundamental . . .  ?)}i 

I2n  . . . .  3rd  partial 

^n   2nd       „ 

A.H   Fundamental 

or  in  musical  language,  calling  the  Fundamentals  d|  and  f  | 

  d' ....  3rd  partial 

f....2nd      „ 

f   Fundamental 

4th  partial. . .  ,d'   

3rd      „       s 

2nd     „     ....  d 

Fundamental   d| 

Thus  a  Fourth,  between  Compound  Tones,  is  defined  by  the 
coincidence  of  3rd  and  4th  partials,  and  for  exact  coincidence,  it  is 
obvious  that  the  vibration  numbers  of  the  Fundamentals  must  be 

in  the  ratio  4:3.  If  they  are  not  exactly  in  this  ratio  the 
inaccuracy  will  manifest  itself  in  the  form  of  beats.  Let  them  bo 
400  and  301  for  example :  then 
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4th  partial   1204   1200  . . .  8rd  partial 

3rd      ,,       903 

2ud      „    ....G02 

800.... 2nd      „ 

400   Fundamental 

Fundamental   301 

4  beats  per  second  will  be  produced. 

A  Fourth  is  not  so  well  defined  as  a  Fifth,  for  not  only  are  the 

coincident  partials  of  a  higher  order,  and  therefore  not  so  prominent 
in  the  former  case,  but  also  the  dissonance  between  the  3rd  and 

2nd  partials  (s  and  f  in  the  above)  masks,  to  a  certain  extent,  the 
beats  between  the  3rd  and  4th  partials  of  this  interval,  when  not 
exactly  in  tune. 

Major  Third.  Let  di  =  4/i  and  pij  =  5n.  be  the  vibration  numbers 
of  two  Compound  Tones  at  this  interval ;  then, 

(V)      20«- 
-20n      (IV) 

(IV)  16» 

(HI)  12n 

(H)    8/1 

(I)    4n 

15/i    (ni) 

lO/i     (H) 

6»    m 

or 

(V) 

(IV)      G 

(HI) 

(H)     d 

(I)    d, 

•m'      (IV) 

t     (in) 

n     (H) n. 

(I) 

the  5th  partial  of  the  lower  tone  will  exactly  coincide  with  the  4  th 

of  the  higher  one.    Thus  a  Major  Third  is  even  more  ill-defined 
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than  a  Pourth,  the  coincidence  being  between  higher,  and  therefore 
usually  weaker  partials,  and  being  masked  more  or  less  by  the  harsh 
dissonance  of  a  semitone  between  the  more  powerful  3rd  and  4th 

partials  (d'  and  t  above). 

Minor  Third.     Let  S|  =  6w.  and  rii  ==  5w  be  the  vibration  numbers 
of  two  Compound  Tones  at  this  interval :  then, 

(VI)    30/i- 

(V)    25)1 

(IV)  20/i 

(HI)  \in 

(H)  \Qn 

-30n    (V) 

(VI)    f 

-f     (V) 

24n  (IV) 

18^   (in) 

\2n  (H) 

(V)    se- 

(IV)    „!' 

(HI)    t 

(H)    n 

6;»  W (I)5;^ 

(IV) 

r'  (HI) 

S     (H) 

(L^ 

(I)  m, 

the  6th  partial  of  the  lower  tone  will  coincide  with  the  5th  of  the 
higher.  The  Minor  Third  is  still  less  defined,  therefore,  than  the 
Major  Third ;  the  coincident  partials  being  of  a  higher  order,  and 
obscured  not  only  by  the  semitone  dissonance  between  the  4th  and 

oth  partials  (s'  and  se'  above)  but  by  the  tone  dissonance  between 
the  3rd  and  4th  (r'  and  n')- 

For  a  given  departure  from  the  exact  ratios,  the  beats  are  more 
rapid  in  the  case  of  the  Thirds,  than  in  the  preceding  intervals ;  for 
example,  let  401  and  500,  and  501  and  600  be  the  vibration  numbers 
of  the  fundamentals  of  a  Major  and  Minor  Third  respectively:  then. 
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in  the  former  case  5  beats  and  in  the  latter  6  beats  per  second  will 
be  produced. 

As  the  intonation  of  the  Thirds  is  guarded  by  such  high,  and 
therefore  weak  partials,  a  slight  error  in  their  tuning  is  much  less 
evident,  than  in  the  case  of  the  Fifth.  Thus  Thirds  tuned  in  equal 
temperament  are,  as  we  shall  see  later  on,  mistuned  to  an  extent, 
which  if  adopted  with  the  Fifth,  would  render  this  latter  interval 
unbearable. 

Major  and  Minor  Sixths.  By  pursuing  the  method  adopted  above, 
the  student  will  find  that  the  fonner  of  these  two  intervals  between 

Compound  Tones,  is  defined  by  the  coincidence  of  the  3rd  and  5th, 
and  the  latter  by  the  coincidence  of  oth  and  8th  partials.  Inasmuch 
as  the  8  th  partial  is  generally  exceedingly  weak,  the  Minor  Sixth 
can  scarcely  be  said  to  be  defined  at  all. 

In  all  the  above  intervals,  we  have  only  considered  the  lowest  pair 
of  coincident  partials,  as  these  are  by  far  the  most  important;  but 
it  must  not  be  forgotten,  especially  in  the  case  of  the  Octave,  and 
Fifth,  that  there  are  coincident  pairs  above  those  given.  If  the 
interval  be  not  quite  true,  not  only  will  beats  be  produced  by  this 
lowest  pair,  but  by  the  higher  also,  and  at  a  more  rapid  rate.  Thus, 
let  di  =  101  and  d  =  200  :  then. 
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2  beats  per  second  will  be  heard  from  the  pair  marked  (2),  4  beats 
per  second  from  that  marked  (4),  and  6  from  that  marked  (6). 

In  timing  Fifths,  Thirds,  &c.,  between  Compoimd  Tones  with 
perfect  exactness,  a  resonator  tuned  to  the  pitch  of  the  coincident 
partials  will  be  found  of  great  service;  for  these  partials  being 
thus  reinforced,  it  will  be  easy  to  discriminate  any  beats 
between  them,  from  the  beats  of  other  partials ;  and  furthermore 
the  disturbing  effect  of  any  dissonating  partials  which  may  be 
present,  will  be  much  lessened. 

It  wiU  be  seen  from  the  above,  that  the  particular  partials  which 
coincide  in  any  interval  are  given  by  the  figures  which  denote  its 
vibration  ratio.  Thus,  the  vibration  ratio  of  the  octave  is  2  :  1,  and 
the  coincident  partials  are  the  2nd  and  1st ;  the  vibration  ratio  of 
of  the  Fifth  is  3  :  2,  and  the  coincident  partials  are  the  3rd  and  2nd, 
and  8 )  on. 

Furthermore,  the  preceding  illustrations  show,  that  in  any 
particular  interval,  if  the  lower  of  the  two  tones  is  one  vibration 
too  sharp  or  too  flat,  the  number  of  beats  produced  by  the  lowest 
pair  of  coincident  partials  is  the  same  as  the  greater  of  the  two 
numbers  which  denote  its  vibration  ratio.  Thus,  in  the  case  of  the 

Major  Third  taken  above, — 401  and  500, — we  found  the  number  ot 
beats  per  second  to  be  5,  and  that  is  the  greater  of  the  two  numbers 
6  :  4  which  give  its  vibration  ratio.  Similarly,  if  the  higher  of 
the  two  tones  of  an  interval  be  one  vibration  too  sharp  or  too  flat, 
the  number  of  beats  per  second  will  be  the  smaller  of  the  two 
numbers  which  denote  its  vibration  ratio.  For  example,  let  the 
vibration  numbers  of  a  mistuned  Fifth  be  200  and  301 :  Then 
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tlie  number  of  beats  per  second  will  be  602  —  600  =  2,  which  is 
the  smaller  of  the  two  numbers,  in  the  ratio,  3:2. 

When  the  two  Compound  Tones  forming  an  interval  do  not 
possess  all  the  first  six  partial  Tones,  the  above  results  require  to  be 
modified. 

Thus  for  example,  in  wide  open  organ  pipes,  the  tones  of  which 
consist  of  only  the  first  two  partials,  the  Octave  is  the  only 
Interval  which  is  defined  by  the  coincidence  of  partials  ;  the  other 
Intervals  being  guarded  merely  by  Differentials. 

Again,  in  stopped  organ  pipes  the  tones  of  which  only  consist 
of  the  Ist  and  3rd  partials,  the  Twelfth  is  the  only  interval  defined 
by  the  coincidence  of  the  partials ;  the  other  intervals,  even  the 
Octave,  being  guarded  by  Differentials  only. 

In  such  cases  as  these,  however,  the  definition  is  better  than  it 
would  be  if  the  tones  were  simple,  more  Differentials  and  those  of 
a  higher  order  being  produced.  For  example,  take  the  mistuned 
Major  Third  d  =  400  and  n  =  501 ,  and  suppose  each  of  these 
tones  to  consist  of  the  first  three  partials  only.  Then  the  1st 
horizontal  line  of  the  following  table  shows  the  partials  of  the  one 
tone,  and  the  Ist  vertical  line  those  of  the  other,  the  differentials  of 
the  1st  order  being  at  the  intersections. 
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The  following  beats  will  be  generated  between  these  Differentials, 

202  —  198  =  4  N 

303  —  299  =  4  [   beats  per  second. 
703  —  699  =  4  ) 

The  Major  Third  between  tones  consisting  of  the  first  three  partials 
is  guarded  therefore  by  three  sets  of  Differential  Tones  of  the  1st 
order. 

Summary  of  Definition  of  Intervals. 

Simple  Tones. 
Octave.     1st  Differential  in  unison  with  lower  tone. 

Fifth.      1st  „  „  „     2nd  Differential. 
Fourth.    1st  „  ,,  „     3rd 

Any  departure  from  true  intonation  produces  beats  between  these 
unisons. 

Other  intervals  practically  undefined. 

Ordinary  Compound  Tones. 

The  Octave,  Fifth  and  Fourth  defined  as  above,  but  also  and 
chiefly  as  follows. 

Octave.  2nd  partial  of  lower  tone  unisonant  with  1st  partial  of  higher. 
Fifth.    3rd      „  „  „  „  „     2nd    „ 
Fourth.  4th     ,,  ,,  „  ,,  ,,     3rd      ,,  ,, 
Major  Third.  5th       ,,  ,,  ,,  ,,     4th      ,,  ,, 
Minor  Third.  6th       ,,  ,,  ,,  .,     5th      ,,  ,, 

and  generally,  in  any  interval  the  unisonant  or  defining  partials  are 
given  by  the  numbers  which  denote  its  vibration  ratio. 

If  the  lower  of  the  two  tones  of  any  interval  be  out  of  tune  by  1 
vibration  per  second,  the  number  of  beats  generated  (by  lowest 
pair  of  defining  partials)  is  the  same  as  the  greater  of  the  two 
numbers  which  denote  its  vibration  ratio ;  if  the  higher  tone  be  out 
of  tune  by  the  same  amount,  the  number  of  beats  is  the  smaller  of 
these  two  numbci*3. 
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CHAPTER    XVI, 

On  tub  Relative  Harmoniousness  of  ihe  Consonant 
TXTERV^OiS. 

We  have  now  to  examine  into  the  causes  of  the  relative  smoothness 
of  those  intervals  which  are  usually  called  consonant. 

With  regard  to  perfectly  simple  tones,  there  is,  as  we  have  already 
seen,  no  element  of  roughness  in  any  of  these  intervals,  except  in 
the  case  of  the  Thirds,  and  in  these  only  when  very  low  in  pitch ; 
consequently,  there  is  found  to  be  little  or  no  difference  in 
smoothness,  between  any  of  these  intervals,  when  strictly  Simple 
Tones  are  employed,  and  when  the  tones  in  question  are  in  perfect 
tune. 

With  Compound  Tones,  however,  the  case  is  very  different :  not 
only  do  these  intervals  vary  in  smoothness — in  harmoniousness — 
one  with  another,  but  the  smoothness  of  any  one  particular  interval 
varies  according  to  the  constitution,  that  is  the  quality,  of  its 
Compound  Tones. 

In  the  first  instance,  we  shall  consider  these  intervals  as  formed 
between  Compound  Tones,  each  consisting  of  the  first  six  partials  ; 
and  as  before,  we  shall  suppose,  as  is  generally  the  case,  that  the 
intensity  of  these  partials  rapidly  diminishes  as  we  ascend  in  the 
series.  In  fig.  80  we  have  the  ordinary  Consonant  Intervals, 
together  with  a  few  others,  drawn  out  so  as  to  show  the  first  five  or 
six  partials  of  each  tone.  To  facilitate  comparison,  the  lower  of  the 
two  tones  in  each  interval,  is  supposed  to  be  of  the  same  pitch 
throughout,  so  that  tones  on  the  same  horizontal  lines  are  of  the 
same  pitch.  The  symbols  for  the  partials  diminish  in  size,  as  they  rise 
above  the  fundamental,  in  order  to  represent  roughly  their  diminution 
in  intensity.  As  before,  partials  forming  a  tone  dissonance  are 
connected  by  a  single  line,  those  that  dissonate  at  a  semitone  are 
joined  by  a  double  one.  In  comparing  the  intervals  of  the  figure, 
it  must  be  borne  in  mind,  not  only  that  the  beats  of  the  semitone 
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are  much  worse  than  those  of  the  tone,  but  also  that  these  vary  in 

themselves— the  beats  of  the  f  tone  ( j  J  for  example)  not  being  so 

harsh  as  those  of  the  l"  tone  ( j  ^),  nor  those  of  the  -|-|  semitone 

( j  ^'),  usually  so  discordant,  as  those  of  the  -||  semitone  ( j  ^^). The  small  letters  or  asterisks  in  curved  brackets  show  the  positions 
of  the  Summation  Tones  generated  by  the  fundamentals. 

The  facts  thus  summarized  in  fig.  80,  will  be  found,  on  careful 
examination,  to  throw  light  on  several  fundamental  phenomena  in 
harmony  relating  to  these  intervals. 

In  the  first  place,  it  will  be  at  once  seen  that  with  regard  to 
Compound  Tones  such  as  those  depicted,  the  Octave  is  the  only 
perfectly  consonant  interval,  that  is,  the  only  one  absolutely  free 
from  roughness.  Moreover,  the  student  will  readily  perceive,  that 
no  roughness,  except  such  as  may  be  inherent  in  the  tones 
themselves,  can  ever  occur  between  two  Compound  Tones,  at  this 
interval,  no  matter  what  their  constitution  may  be ;  for  the  higher 
of  the  two  tones  only  adds  to  the  lower  one,  elements  which  are 
already  present. 

The  fact  that  the  Octave  is  the  only  Interval  devoid  of  all 
roughness,  explains  why  this  interval  is  the  only  one  that  can  be 
used  in  all  regions  of  the  musical  scale,  on  all  instruments.  Again 
the  fact,  that  the  Compound  upper  tone  of  the  Octave,  adds  nothing 
new,  but  simply  reinforces  tones  already  present  in  the  Compound 
lower  tone,  explains  the  similarity  in  effect  of  the  two  tones  forming 
an  Octave.  We  can  thus  understand,  how  it  is  that  a  company  of 
men  and  women  totally  unskilled  in  music,  and  utterly  unable  to 
sing  in  Thirds,  &c.,  yet  experience  no  difficulty  in  singing  together 
a  tune  in  Octaves,  and  indeed  when  doing  so  usually  consider 
themselves  to  be  singing  tones  of  the  same  pitch ;  in  fact,  such 
singing  is  called,  even  by  musicians,  unison  singing. 

Again,  w  e  see  why  a  part  in  music  for  the  Pianoforte,  Harmonium, 
&c.,  may  be  doubled  with  impunity ;  for  such  addition  adds  nothing 
absolutely  new ;  it  simply  reinforces  the  upper  partials  of  tones 
already  present,  thus  producing  a  brighter  effect. 

The  Fifth  as  constituted  in  fig.  80  is  not  always  a  perfectly 
Consonant  Interval,  for  as  the  figure  shows  the  3rd  partial  of  the 
upper  compound  tone,  dissonates  with  both  the  4th  and  5th  of  the 
lower  one.  The  degree  of  roughness  thus  produced,  will  depend 
upon  the  intensity  of  these  partials,  and  inasmuch  as  they  are 
usuallv  faint,  the  roughness  will  be  but  slight.     Other  things  being 
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equal,  the  roughness  of  this  inteiTal  will  depend  upon  its  position 
in  the  musical  scale;  such  roughness  becoming  greater  as  we 
descend,  and  less  as  we  ascend.  Two  reasons  may  be  assigned  for 
this ;  in  the  first  place,  the  upper  partials  of  low  tones  are  usually 
stronger  than  those  of  higher  ones,  and  consequently,  when  thoy 
beat  with  one  another  the  beats  are  more  intense,  thus  producing  a 
harsher  effect ;  secondly,  partials  that  beat  with  one  another  in  the 
lower  part  of  the  musical  scale  may  be  beyond  beating  distance  in 
the  upper  part.  To  illustrate  this  fact,  which  of  course  applies  to 
other  intervals,  we  will  take  two  or  three  cases  of  Fifths  in  different 
parts  of  the  musical  scale. 

First,  take  C  =  d  =  256,  then  s  =  384. 
3rd  partial  of  s  =  384  X  3  =  1152 
4th        „  d  =  256X  4  =  1024 

number  of  beats  pr^r  second  =128 

Now  from  the  table  on  page  159,  we  know  xhat  128  beats  per  second, 
in  the  neighbourhood  of  C^  =  1,024,  is  only  just  within  the  beating 
distance ;  consequently  we  may  conclude  that  fifths  above  middle  C 
having  the  constitution  assumed  above,  are  devoid  of  all  roughness 
whatever. 

Next  take  Cj  =  dj  =  64,  then  Sj  =  96. 
3rd  partial  of  Sj  =  96  X  3  =  288 
4th         „  d2  =  64x  4  =  256 

number  of  beats  per  second  =    32 

From  the  table  of  page  159,  we  see  that  32  beats  per  second  in  the 
region  of  C  =  256  form  a  somewhat  harsh  dissonance.  In  fact, 
when  Cj  and  Or^  are  strongly  sounded  on  a  harmonium,  the  harsh 
effect  produced  is  due  to  the  dissonating  partials  C  and  D,  and 
consequently  this  harsh  effect  is  about  the  same  as  that  obtained  by 
softly  sounding  the  C  and  D  digitals  t  )gether, — a  matter  which  can 
be  easily  put  to  the  proof. 

The  above,  therefore,  explains  the  fact,  that  while  an  Octave 
may  be  played  anywhere  in  the  Musical  Scale,  a  Fifth  cannot  be 
well  used  below  a  certain  limit.  On  the  other  hand,  we  see  that 
speaking  generally,  a  Fifth  is  a  perfectly  consonant  interval,  when 
taken  above  middle  C  ;  we  might  therefore  term  this,  the  limit  of  a 
perfectly  consonant  Fifth  on  the  Harmonium,  Pianoforte,  and 
stringed  instruments  in  general. 
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A  glance  at  fig.  80,  shows  that  the  Fourth  is  not  so  perfect  an 
interval  as  the  Fifth.  Its  roughness  arises  chiefly  from  the  beats 
generated  between  the  usually  powerful  2nd  partial  of  the  upper 
tone,  and  the  almost  equally  loud  3rd  partial  of  the  lower  one.  To 
this  may  be  added  the  much  softer  semitone  and  tone  dissonances 
between  4th,  5th,  and  6th  partials ;  and  a  still  slighter  disturbing 
element  may  be  sometimes  present  in  the  Summation  Tone  midway 
between  the  2nd  partials.  It  may  be  noted  also  that  the  2nd  and 
3rd  pairs  of  dissonating  partials,  the  4th  and  oth  pairs,  and  also  the 
Summation  Tone,  give  rise  to  precisely  the  same  number  of  beats. 

As  in  the  case  of  the  Fifth,  not  only  will  the  roughness  of  this 
interval  vary  with  the  varying  intensities  of  dissonatiog  partials, 
but  other  things  being  equal,  with  its  position  in  the  Musical  Scale. 

For  example  take  G  =  d  =  384,  then  f  =  512 
3rd  partial  of  d  =  384  X  3  =  1152 
2nd         „         f  =  512X  2  =  1024 

number  of  beats  per  second  =    128 

which  (see  table,  page  159)  is  only  just  within  beating  distance.  It 
may  be  noticed  that  this  number  is  the  same  that  we  obtained  in 

the  case  of  the  Fifth  j  §,  showing  that  in  order  to  obtain  a  Fourth 
of  approximately  equal  smoothness  with  a  Fifth,  we  must  take  the 
former  a  Fifth  higher  in  pitch.  Thus  using  the  term  in  the  same 
sense  as  before,  we  might  call  this  the  lower  limit  of  a  perfectly 
consonant  Fourth. 

Coming  now  to  the  Thirds,  we  find  in  both  Major  and  Minor, 
that  the  Third  partial  of  the  Upper  Tone  dissonates  with  the  4th 
partial  of  the  lower  one ;  but  while  in  the  latter  they  f onn  only  a 
tone  dissonance,  in  the  former  they  dissonate  at  the  much  more 
unpleasant  interval  of  a  semitone.  On  the  other  hand,  while  softer 
4th  and  5th  partials  respectively  of  the  Minor  Third  beat  at  a 
semitone  distance,  the  corresponding  partials  of  the  Major  Third  do 
not  beat  at  all.  Further,  the  Summation  tones  when  present  will 
add  to  the  roughness ;  that  of  the  Minor  Third  being  slightly  more 
detrimental  than  that  of  the  Major. 

The  Thirds,  in  respect  to  their  harmoniousness  vary  very  greatly 
according  to  their  position  in  the  Musical  Scale.  They  cannot  be 
used  very  low  in  pitch,  even  when  they  are  formed  between  Simple 

Tones:  for  as  we  have  already  seen  the  Thirds  {q;  and  j^' 
between  Simple  Tones  are  at  the  beating  distance,  that  is,  Cj  and  C| 
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are  the  limits  respectively  at,  and  below  which,  a  Major  and  a 
Minor  Third  between  Simple  Tones,  become  dissonant.  Thirds  at 
or^below  these  limits,  between  Compound  Tones,  contain  of  course 
these  same  elements  of  roughness,  between  their  fundamentals ;  to 
which  however  must  be  added,  the  further  roughnesses  due  to  their 
beating  overtones.  Thirds,  above  these  limits,  must  owe  their 
roughness  chiefly  to  beating  overtones. 

From  fig.  80,  we  see  that  the  smoothness  of  a  Major  or  Minor 
Third  between  Compound  Tones,  above  the  limit  just  referred  to, 
depends  chiefly  upon  the  loudness  of  the  beats  between  3rd,  4th, 
and  5th  partials.  Now  observation  shows  that  in  the  case  of  the 
Voice,  Harmonium,  and  Piano,  these  partials  generally  become 
weak  or  even  altogether  absent  above  middle  C ;  consequently, 
Thirds  above  this  region,  on  these  instruments  will  be  as  a  rule 
sufficiently  smooth.  As  we  descend,  however,  from  this  region, 
Thirds  rapidly  deteriorate,  for  in  the  first  place  these  partials  begin 
to  assert  themselves,  and  secondly,  the  fundamentals  are  approxi- 

mating to  the  beating  distance. 

To  take  an  example : 

Let  C,  =  128,  then  E,  =  16Q 
4th  partial  of  C,  =  128  X  4  =  512 
3rd        „         E,=  160X  3  =  480 

number  of  beats  per  second  =    32 

and  32  beats  per  second,  in  the  region  of  C  =  512  are  veiy  harsh 
if  at  all  prominent. 

Again, 
Let  C,  =  128,  then  EtZ,  =  153^ 

4th  partial  of  C,  =  128  X  4  =  512 
3rd        „       E^,  =  153AX  3  =  460| 

number  of  beats  per  second  =    51| 

which  is  within  beating  distance  in  the  region  of  C  =  512.  To 
this  must  be  added,  first,  the  roughness  due  to  the  153}  —  128=25f, 
beats  per  second  between  the  fundamentals,  which  are  just  about 
the  beating  distance,  secondly,  that  due  to  the  possible  Summa- 

tion Tone,  and  thirdly,  that  arising  from  the  dissonant  5th  and  4th 

partials. 
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It  should  be  observed,  that,  though  such  3rd  and  4th  partials  may 
be  absent  or  weak  in  tones  which  are  produced  softly,  they  may 
become  very  prominent  in  those  tones  when  sung  or  played  loudly; 
consequently  a  Third  which  may  be  perfectly  smooth  and 

harmonious  when  softly  plaj-ed  or  sung,  may  become  rough  and 
unpleasant  when  more  loudly  produced :  a  remark  which  evidently 
applies  to  other  intervals  also. 

The  foregoing  explains,  why  Thirds  were  not  admitted  to  the  rank 
of  consonances,  until  comparatively  recent  times.  Por  the  compass 

of  men's  voices  (in  respect  to  which,  the  music  among  classical 
nations  was  chiefly  developed)  lies  chiefly  below  middle  C,  and  as 
we  have  just  seen.  Thirds  in  the  lower  parts  of  that  compass  are 
actually  dissonant. 

We  have,  in  the  above,  also,  the  explanation  of  the  rule  in 
harmony  which  forbids  close  intervals  between  the  tenor  and  the 
bass,  when  these  parts  are  low  in  pitch. 

To  sum  up  the  comparative  smoothness  of  the  Thirds :  we  find 
that  these  intervals  may  be  almost  or  quite  devoid  of  roughness 
when  somewhat  high  in  pitch,  and  may  even  excel  the  Fourth  in 
smoothness  under  these  circumstances,  but  that  they  rapidly 
deteriorate,  as  we  descend  below  middle  C. 

For  Compound  Tones  of  such  constitution  as  depicted  in  fig.  80, 
the  Major  Sixth  seems  decidedly  equal,  if  not  slightly  superior,  to 
the  Fourth.  As  in  the  case  of  the  latter  interval,  the  2nd  partial 
of  its  upper  tone  dissonates  with  the  3rd  partial  of  the  lower,  at 
the  interval  of  a  tone,  but  the  roughness  due  to  dissonances  between 
the  4th  and  5th  partials  in  the  latter  interval  is  wanting  in  the 
former.  As  a  set  off  to  this  advantage,  however,  we  see  that  the 
Summation  Tone  in  the  Major  Sixth  when  present,  produces  a  tone 
dissonance  with  the  3rd  partial  of  the  lower  tone. 

On  the  other  hand,  the  Minor  Sixth  is  the  worst  interval  we  have 
yet  studied.  Its  chief  roughness  is  due  to  the  semitone  dissonance 
between  the  2nd  partial  of  the  upper  and  the  3rd  partial  of  the 
lower  tone,  which  are  usually  pretty  loud.  A  subsidiary  roughness 
is  seen  above  between  the  3rd,  4th,  5th  and  6th  partials. 

As  an  example  of  the  Major  Sixth, 
take  d  =  384,  then  1  =  640 

2nd  partial  of  1  =  640  X  2  =  1280 
3rd        „  d  =  384  X  3  =  1152 

number  of  beats  per  second  =    128 
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whicli  we  see  from  the  table  on  page  159  is  on  the  verge  of  the 
beating  distance.  G  =  384  may  be  taken  therefore,  as  the  limit 
above  which  a  Major  Sixth  is  a  perfectly  smooth  interval,  and 
below  which  it  gradually  deteriorates. 

On  the  other  hand  the  Minor  Sixth  at  this  pitch  has  still  an 
element  of  roughness,  for 

let  n  =  384,  then  d'  =  614| 
2nd  partial  of  d'  =  614|  X  2  =  1228| 
3rd         „         n  =384    X  3  =  1152 

number  of  beats  per  second  =     76f 
which  forms  a  harsh  dissonance  in  this  region. 

On  comparing  the  relative  smoothness  of  the  Fourth,  Major 
Sixth,  and  Major  Third,  no  valid  reason  appears  for  the  precedence, 

which  is  usually  granted  to  the  first-named  interval  over  the  other 
two ;  and  in  fact  no  such  precedence  can  be  assigned  to  the  Fourth, 
if  the  three  intervals  be  judged  by  the  ear  alone,  under  similar 

circumstances.  As  Helmholtz  remarks  "the  precedence  given  to 
the  Fourth  over  the  Major  Sixth  and  Third,  is  due  rather  to  its 
being  the  inversion  of  the  Fifth,  than  to  its  own  inherent 

harmoniousness. ' ' 
In  the  Diminished  Fifth  and  Augmented  Fourth  or  Tritone  the 

2nd,  3rd,  and  4th  partials  of  the  upper  tone  dissonate  at  the  interval 

of  a  semitone  with  the  3rd,  ith,  and  6th  pai-tials  of  the  lower  tone ; 
after  mentioning  which  elements  of  roughness,  it  is  scarcely 
worth  while  to  point  out  the  tone  dissonance  between  the  4th  and 
5th  partials. 

Although  the  above  results  apply  fairly  well  to  all  instruments, 
the  tones  of  which  consist  of  the  1st  six  partials,  to  such 
instruments  for  example,  as  the  pianoforte,  harmonium,  open  pipes, 
of  organs,  and  the  human  voice ;  yet  it  will  not  do  to  apply  them, 
in  a  hard  and  fast  manner,  to  any  instrument  whatever.  The  low 
tones  of  the  harmonium,  for  example,  especially  if  the  instrument 
be  loudly  played,  contain  more  than  the  1st  six  partials,  while  those 
of  open  organ  pipes,  gently  blown,  often  consist  of  fewer.  Again, 
the  tones  of  the  human  voice  vary  wonderfully  in  their  constitution, 
not  only  in  different  voices,  but  also,  and  chiefly,  according  to  the 
particular  vowel  sound  produced.  The  influence  which  the  vowel 
sounds  have  in  modifying  the  roughness  or  smoothness  of  an 
interval,  can  best  be  realized  by  making  a  few  experiments  with 

men's  voices.    Let  such  intervals  as  the  Major  and  Minor  Thirds  be 
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Bounded  by  voices  at  different  pitches  below  middle  0,  first  on  such 

vowel  sounds  as  **a"  in  father,  **i"  in  pine,  and  afterwards  on 
**  00  "  in  cool.  The  diminution  in  roughness  in  the  latter  case  is 
very  striking.  The  chief  cause  of  the  charm  of  soft  singing, 
doubtless  lies  in  the  fact,  that  the  upper  dissonating  partials  of 
Thirds,  Sixths,  &c.,  become  so  faint,  as  to  be  practically  nonexistent. 

Intervals  between  Compound  Tones  consisting  of  the  odd  partials 

only, — such  tones,  for  example,  as  are  produced  by  the  naiTOw 
stopped  pipes  of  the  organ  and  by  the  clarionet— may  be  more 
briefly  noticed.  Fig.  81  shows  the  ordinary  consonant  intervals 
between  such  tones,  fully  drawn  out  on  the  plan  of  fig.  80.  The 

first  thing  that  strikes  us  on  looking  at  the  figure,  is  the  improve- 
ment noticeable  in  each  interval ;  most  of  the  dissonances  of  fig.  80 

having  vanished.  The  reader  will  be  surprised,  doubtless,  by  the 

apparent  inferiority  of  the  Fifth  to  most  of  the  other  intervals — to 
the  Thirds — for  example  ;  but  we  must  point  out  that  it  is  for  the 
most  part  only  apparent.  For  we  have  already  seen,  that  the  Fifth 
is  a  perfectly  smooth  interval  above  middle  C;  consequently  the 
Thirds  can  only  be  superior  to  the  Fifth  below  that  limit :  and  we 
have  shown  above  that  the  Thirds  rapidly  deteriorate  as  they  sink 
in  pitch  from  that  point,  in  consequence  of  their  fundamentals 
approaching  the  Beating  Distance. 

Another  interesting  case  is  that  of  Intervals  between  Compound 
Tones,  one  of  which  consists  of  only  odd,  and  the  other  of  the  full 
scale  of  partials ;  such  intervals  as  would  be  produced,  for  example, 
by  a  Clarinet  sounding  one  tone  and  a  Oboe  the  other.  There  will 
be  two  cases  according  as  the  lower  tone  is  sounded  on  the  former, 
or  the  latter  instrument.  Fig.  82  shows  the  ordinary  consonant 
intervals,  drawn  out  after  the  manner  of  the  two  preceding  figures. 
Each  interval  is  given  twice:  in  those  marked  Ob  CI  the  lower 
tone  of  the  interval  is  supposed  to  be  sounded  by  the  Oboe,  while 
in  those  marked  01  Ob  the  Clarinet  produces  the  lower  tone. 

It  is  evident  at  once,  that  it  is  not  a  matter  of  indifference,  to 
which  instrument  the  lower  tone  is  assigned.  The  Fifth  and  Major 
Third  are  decidedly  better  when  the  lower  tone  is  given  to  the 
the  Clarinet;  while  the  Fourth,  Major  Sixth,  and  Minor  Sixth  are 
smoother,  when  the  Oboe  takes  the  lower  tone. 

From  the  foregoing,  it  is  quite  clear  that  no  hard  and  fast  line 
can  be  drawn  between  Consonance  and  Dissonance ;  for  as  we  have 

seen,   every  interval,   between  ordinarily  constituted  Compound 
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Tones,  except  the  Octave,  becomes  a  dissonance  when  taken 
sufficiently  low  in  pitch.  Furthermore,  when  the  intervals  of  fig. 
80  are  taken  in  the  same  region  of  the  musical  scale,  there  is  an 
uniform  gradation  of  roughness,  or  diminution  of  smoothness  im 
passing  from  the  Perfect  Fifth  on  the  left,  to  the  diminished  Fif tha 

on  the  right,  which  is  usually  looked  upon  as  a  dissonance.  Again-,, 
with  similar  Compound  Tones,  and  in  the  same  region  of  pitch, 
some  so-called  dissonances  are  not  inferior  to  intervals  universally 
termed  consonant.    Compare  for  example,  ^ 

0, 

c. 

^ 

a 

E 

c, 

Hitherto,  wo  have  only  considered  Intervals  not  greater  than  an 
Octave,  and  in  musical  theoiy,  no  great  distinction  is  drawn, 
between  an  interval,  and  its  increase  by  an  Octave.  In  reality, 
however,  the  addition  of  an  Octave  to  an  Interval,  between 
Compound  Tones,  does  exercise  a  great  influence  on  its  relative 
smoothness.  Fig.  83  shows,  on  the  same  plan  as  before  the 
Twelfth,  Eleventh,  Tenths,  and  Thirteenths. 

The  first  point  to  be  noted  about  these  intervals  is  that  the 
addition  of  an  Octave  to  a  Fifth,  makes  the  Interval  a  perfect  one  : 
the  addition  of  the  Compound  Tone  (s)  to  the  Compound  Tone  (d|) 
supplying  no  new  partial  tone  to  the  latter.  A  Twelfth  is  therefore 
decidedly  superior  to  a  Fifth.  On  the  other  hand  by  comparing 

the  Eleventh  j  |^  of  fig.  83  with  the  Fourth  j  J^  of  fig.  80  it  will  be 
seen  that  the  former  is  the  worse  of   the  two :    for  though  the 
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dissonances  are  at  the  same  interval  in  each ;  in  the  latter,  it  is  the 

dissonance  of  a  3rd  partial  against  a  2nd,  while  in  the  former  it  is 
the  dissonance  of  a  3rd  partial  ai^ainst  a  Fundamental.  Similarly 

the  Major  and  Minor  Thirteenths  are  infeiior  to  the  Major  and 
Minor  Sixths. 

The  Major  Tenth  however  is  greatly  superior  to  the  Major  Third, 

the  3rd  and  4th  partial  dissonance  |  ^'  of  the  latter,  being  absent  in 
the  former.  With  regard  to  the  Minor  Tenth  and  Minor  Third, 

although  in  the  former,  the  3rd  and  4th  partial  dissonance  |  ̂ 

of  the  latter  has  disappeared,  yet  the  semitone  dissonance  j  ®^ 
being  now  between  oth.  and  2nd  partials,  will  be  much  more 

prominent  in  the  f<jimer  than  in  the  latter,  where  it  only  occurs 
between  oth  and  4th  partials.  Under  these  circumstances  it  is 

difficult  to  say  which  is  the  better  interval  of  the  two.  Helmholtz 
holds  that  the  Minor  Third  is  the  superior,  and  so  obtains  the 

following  symmetrical  rule  to  meet  all  cases  : — 

' '  Those  intervals,  in  which  the  smaller  of  the  two  numbers 
expressing  the  ratios  of  the  vibration  numbers  is  odd,  are  made 

worse  by  having  the  upper  tone  raised  an  Octave ;  "  while 
"Those  intervals,  in  which  the  smaller  of  the  two  numbers 

expressing  the  ratios  of  the  vibration  numbers  is  even,  are 

improved  by  having  the  upper  tone  raised  an  Octave." 

"We  conclude  the  present  Chapter,  by  giving  in  fig.  84,  Helm- 
holtz's,  graphic  representation  of  the  relative  harmoniousness  of 
musical  intervals. 

Fig.  84. 

In  this  figure,  the  intervals  are  represented  by  the  horizontal 
distances  CE[?,  CE,  &c.,  measured  from  the  point  C ;  while  the 
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rougliness  of  the  intervals  is  shown  by  the  vertical  distances  of  the 

cui-ved  line  from  the  corresponding  points  E2,  E,  &c.,  on  the^ 
horizontal  line.  For  example  ;  the  roughness  of  the  interval  j  ̂ 
IS  represented  by  the  length  of  the  verli  iul  line  over  the  point  E2 ; 

the  roughness  of  the  interval  |  q,  by  the  short  vertical  line  over  the- 
point  E,  and  so  on.  Thus,  if  we  liken  the  curve  to  the  outline  of 
a  mountain  chain,  the  dissonances  are  represented  by  peaks,  while 
the  consonances  correspond  to  passes. 

According  to  this  figure,  the  consonances  in  the  order  of  their 
relative  harmoniousness,  are, 

Octave, 
Fifth, 

/'Fourth, 

<  Major  Sixth, 

(Major  Third, 
Minor  Third, 

Minor  Sixth. 

In  making  use  of  the  figure,  however,  the  student  must 
sontinually  bear  in  mind,  the  assumptions  on  which  it  wa» 
calculated;  viz.,  that  the  roughness  vanishes  when  there  are  na 
beats ;  that  it  increases  from  this  to  a  maximum  for  33  beats  per 
second  ;  that  it  diminishes  from  this  point  as  the  number  of  heats- 
per  second  increases;  and  lastly,  that  the  intensity  of  the  partial 
tones  diminishes  inversely  as  the  square  of  their  order.  The 
conclusions  expressed  in  the  diagram,  are  therefore  only  true  in 
those  cases  in  which  these  assumptions  are  true,  or  approximately 
true. 

Summary. 

All  the  consonant  intervals  between  Simple  Tones  are  equally 
smooth  or  harmonious. 

Intervals,  whether  between  Simple  or  Compound  Tones,  having 
the  following  vibration  ratios, 

are   perfect    in    their    smoothness;    they    have    no    elements    of 
roughness  whatever. 
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The  consonant  intervals  less  than  an  Octave  vary  in  smoothness 

according  to  the  constitution  or  quality  of  their  constituent  Com- 
pound Tones,  and  according  to  their  position  in  the  scale  of  pitch. 

Helmholtz's  arrangement  for  average  qualities  of  tone  is, 
(1)  Fifth, 
(2)  Fourth,  Major  Third,  Major  Sixth, 
(3)  Minor  Third, 
(4)  Minor  Sixth. 

For  other  consonant  intervals  greater  than  an  Octave,  Helmholtz's 
rule  applies,  viz  : — 

Those  intervals  in  which  the  smaller  of  the  two  numbers 

expressing  the  ratios  of  the  vibration  numbers,  is  even,  are  improved 
by  having  the  upper  tone  raised  an  Octave,  and  vice  versa ;  thus, 

Fifth  iJ  ,     ,  (Twelfth. 

Major  Third    i  \  ""^^^^^^  ̂ ^  '^'^"^"^  }  Major  Tenth. 
Fourth  4  ]  f  Eleventh. 

\  Minor  Tenth, 
made  worse  by  becoming< ,  ,  .     ̂ .  ̂ 

i Major  Thirteenth. 

\  Minor         ,, 

Minor  Third 

Major  Sixth 
Minor 



2M 

CHAPTER    XVII. 

Chobds. 

We  Lave  already  seen  that  the  Consonant  intervals,  within  the 
Octave,  are  the  Minor  and  Major  Thirds,  the  Fourth,  the  Fifth,  and 
the  Minor  and  Major  Sixths.  If  any  two  of  these  intervals  be 
united,  by  placing  one  above  the  other,  the  interval  thus  formed 
between  the  two  extreme  tones,  may  or  may  not  be  consonant.  In 
the  former  case  the  combination  is  termed  a  Consonant  Triad. 

In  order  to  obtain  all  the  Consonant  Triads  within  the  compass  of 
an  Octave,  it  is  therefore  only  necessary  to  combine  the  above 
intervals  two  and  two,  and  select  those  combinations,  whose  extreme 
tones  form  a  consonant  interval.  The  following  table  shows  all  the 
combinations  of  the  above  intervals,  taken  two  at  a  time,  whose 
extreme  tones  are  at  a  smaller  interval  than  an  Octave. 

(1)  Minor  Third  +  Minor  Third,  f  X  |  =  f|^ 
(2)  „  +  Major      „        f  X  ̂   =  f ,  Fifth 

(3)  „  4-  Fourth,  f  X  |  =  | ,  Minor  Sixth 
(4)  „  +  Fifth,               I  X  i  =  f 

(6)  „  4-  Minor  Sixth,  |  X  |  =  ̂  
(6)  Major  Third  +  Major  Third,  a  x  i  =  ?i 

(7)  „  +  Fourth,  i.  X  I  =  i ,  Major  Sixth 

(8)  „  +  Fifth,  Axi=V 

(9)  Fourth  +  Fourth,  4  x  4  =  V* 

The  only  combinations  in  the  above,  the  extreme  tones  of  which 
form  a  consonant  interval,  are  Nos.  2,  3,  and  7.    But  each  of  these 



CHORDS. 205 

is  capable  of  forming  two  Consonant  Triads,  according  as  tlie 
smaller  of  the  constituent  intervals  is  below  or  above.  Consequently 
we  find  that  there  are  altogether  six  Consonant  Triads  :  viz., 

From  (2)     (  Minor  Third as 

Major      ,, 

r  Mai  or  Third 

(,  Minor      „ 

1; 

From  (3)     r  Minor  Third 

(.Fourth 

i  Fourth 

{  Minor  Third 

From  (7)      (  Major  Third 

I  Fourth 

i  Fourth 

f  Major  Third 

as 

If  the  lowest  tone  (d)  of  the  1st  Triad  be  raised  an  Octave,  we 

(d' 

obtain  the  4th  Triad  above   j  s ;  while  if  the  highest  tone  (s)  of  this 

same  Triad  be  lowered  an  Octave  we  get  the  5th  Triad  j  d.  Hence 

the  4th  and  5th  Triads  are  usually  considered,  to  be  derived  from 

the  1st,  and  are  called,  respec'ively,  its  First  and  Second  Inversions, 
or  more  briefly,  its  "6"  and  "  /;"  positions. 

Again,  if  the  lowest  tone  (1|)  of  the  2nd  Triad  be  raised  an  Octave 

we  obtain  the  6th  Triad  j  m;  while  the  lowering  of  the  highest  tone 
Id  r  ̂  

(n)  through  the  same  interval,  produces  the  3rd  Triad  ]  1,  .     Hence, 

as  before,  the  6th  and  3rd  Triads  are  considered  to  be  derived  from 

the  2nd  and  are  called  its  First  and  Second  Inversions,  or  its  "  h  '* 
and  "  c  "  positions  respectively. 
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The  1st  Triad  j  m,  which  has  the  Major  Third  below  and  the \  d  rxn, 
Minor  Third  above,  is  called  a  Major  Triad,  while  the  second  J  d 

'  li 

which  
has  the  Minor  

Third  
below  

and  
the  

Major  
above,  

is  termed a  Minor  Triad.      The  Six  Consonant  Triads  may  therefore  be 
arranged  as  follows : 

MAJOR  TEIADS. 

First  Inversion 

I  Fourth 

f  Minor  Third 

Normal 

(  Minor  Third 

(  Major  Third 

Major  Third 

Minor  Third 

MINOR  TRIADS. 

Fourth 

Major  Third 

Second  Inversion 

i  Major  Third 

f  Fourth 
n 
d 

8| 

Dc 

I  Minor  Third 

f  Fourth 

We  shall  first  consider  the  Major  Triads.  An  idea  of  the  relative 
harmoniousness  of  these  Triads  may  be  obtained  by  the  aid  of  fig.  85, 
in  which  these  Triads  are  fully  drawn  out,  on  the  same  plan  as  in 
fig.  80,  for  Compound  Tones  containing  the  first  six  partials.  In 
€ach  Triad,  the  first  six  partials  of  the  lowest  tone,  the  first  five  of 
the  middle  tone,  and  the  first  four  of  the  highest  tone  are  given. 
The  partials,  that  dissonate  at  the  interval  of  a  tone  are  connected, 
as  before,  by  a  single  line,  those  dissonating  at  a  semitone  distance, 
by  a  double  line.  Whenever  any  partial  dissonates  with  two 
partials  of  the  same  pitch,  the  first  partial  is  connected  with  that 
partial  of  the  other  two  which  is  of  a  lower  order,  that  is,  with  the 
one  which  is  presumably  the  louder  of  the  two. 

In  order  to  facilitate  the  comparison  of  the  Triads,  an  analysis  of 
fig.  85  is  given  in  the  following  table,  in  which  the  first  horizontal 
line  gives  the  names  of  the  Triads  ;  the  next  three  Unes  sh^w  the 
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corresponding  partials  whicli  beat  at  a  semitone  distance  ;  and  the 
remaining  lines,  those  that  beat  at  a  tone  distance.  It  has  not  been 
thought  necessaiy  to  discriminate  between  the  16 :  15  and  the  25  :  24 
beats,  nor  between  the  9  :  8  and  10 :  9. 

Dc 

Da 

T>h 

Partials  which  beat  at 
the  interval  of  a 

semitone. 

3  ,  4 3,4 
4,5 

2.3 
3,  5 4,5 

Partials  which  beat  at 
the  interval  of  a 

tone. 

2,3 

2  ,  3 
4,6 
4,6 

3.4 

3,4 

2,3 

3,4 

Comparing,  in  the  first  place,  Dc  with  Da  :  after  eliminating  the 
semitone  dissonance  between  the  3rd  and  4th  partial,  which  is 
common  to  both,  there  remains  in  the  latter,  a  semitone  dissonance 

between  a  4th  and  5th  partial,  which  is  absent  in  the  former.  On 

the  other  hand,  among  the  tone  dissonances,  Dc  has  two,  between 
the  2nd  and  3rd  partials,  as  against  the  two  between  3rd  and  4th 
partials  in  Da  :  the  former  being  of  course  the  more  prominent. 
The  two  dissonances  of  4th  against  6th  partials  are  so  slight,  that 
they  may  be  disregarded.  It  is  difficult,  on  the  whole,  to  decide 
between  these  two  Triads ;  there  is  probably  not  much  difference 
between  them.  Helmholtz  gives  the  preference  to  Dc,  which  we 

have  therefore  put  first  in  the  table. 
If  there  be  any  doubt  concerning  the  relative  harmoniousness  of 

Dc  and  Da,  there  can  be  none  with  respect  to  D&.  Comparing  it 
with  Da  :  after  discarding  the  semitone  dissonance  of  a  4th  against 

a  5th  partial,  which  is  common  to  both,  there  remains  in  D&  the  two 
semitone  dissonances  of  a  2nd  against  a  3rd  and  a  3rd  against  a  5th 

partial,  while  in  Da  there  is  only  that  of  a  3rd  against  a  4th. 
Again,  among  the  tone  dissonances,  after  throwing  out  that  of  a  3rd 

against  a  4th  partial  from  both,  there  remains  in  D&  the  dissonance 
of  a  2nd  against  a  3rd,  while  in  Da  there  is  the  less  prominent 
dissonance  of  a  3rd  against  a  4th.  Thus  D&  is  decidedly  the  least 
harmonious  of  the  Major  Triads. 

Coming  now  to  the  Minor  Triads  :  fig.  86  shows  them  drawn  out 
on  the  same  plan  as  in  fig.  85,  and  the  following  table  contains  an 
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analysis  of  the  results,  arranged  in  the  same  way  as  in  the  case  of 
the  Major  Triads. 

La           L& Lc 

Partials  which  beat  at 

the  intei-val  of  a 
semitone. 

3,4 
4,5 

3,4 
4,5 
5.6 

2,3 

3,  5 4  ,  5 
4  ,  5 
4  ,  6 

Partials  which  beat  at 
the  interval  of  a 

tone. 

3,4 
3  ,4 
3,5 

2,3 
2,3 

4,6 

2,3 

3,4 4  .  6 

5  ,  6 

In  comparing  La  and  L6,  we  may  first  eliminate  the  semitone 
dissonances  of  a  3rd  against  a  4th,  and  4th  against  5th  partials, 
which  are  common  to  both ;  the  slight  semitone  dissonance  of  a  5th 
against  a  6th  still  remaining  in  the  case  of  the  latter.  Further  the 
two  tone  dissonances  of  2nd  against  3rd  partials  in  L&  will  be  more 
prominent  than  the  two  between  3rd  and  4th  partials  in  La.  For 
these  reasons  La  seems  slightly  more  harmonious  than  L&,  and  has 
accordingly  been  placed  first  in  the  Table.  It  is  only  right  to  state, 
however,  that  Helmholtz  places  L6  before  La. 
About  he  there  can  be  no  doubt :  it  has  no  fewer  than  five 

semitone  dissonances,  including  the  prominent  one  of  a  2nd  against 
a  3rd  partial;  it  is  decidedly  the  least  harmonious  of  the  six 
Triads. 

It  must  be  recollected  that  the  above  results  refer  only  to  the 
ibolated  triads ;  in  order  to  test  these  conclusions,  each  chord  must 
be  struck  separately,  unconnected  with  any  others,  and  judged 
entirely  by  its  own  inherent  harmoniousness.  Furthermore,  they 
must  not  be  taken  too  low  in  the  scale,  or  beats  between  the 
fundamentals  may  occur;  and  lastly,  it  must  be  borne  in  mind, 
that  the  intervals  are  supposed  in  the  above,  to  be  in  just 
intonation. 

On  comparing  Da  with  La  in  the  above  tables,  it  will  be  found 
that  they  appear  very  nearly  on  an  equality  with  regard  to  their 
harmoniousness.  The  same  result  is  obtained  on  comparing  their 
constituent  intervals;    each   consisting  of  a  Major  and  a  Minor 
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Third,  and  a  Fifth.  Thus  we  should  expect  a  Minor  Triad  to 
sound  as  well  as  a  Major  Triad.  This,  however,  as  every  one  knows, 
is  not  the  case.  The  cause  of  this  must  be  looked  for  in  the 
DifBerential  Tones. 

The    Differential    Tones    of    these    Triads,   can    be    found    by- 
ascertaining  the  Differentials  generated  by  their  constituent  tones. 

Thus  in  the  Triad    jm  we    find    from  the    table  on  page   130 

Ohap.  XII,  that  j  ̂  generates  a  Differential  dg ;  j  ̂  generates  dg, 

and  j  ̂  produces  d|.  Proceeding  in  this  way,  we  shall  find  the 
Differential  Tones  of  the  Major  and  Minor  Triads  are  as  follows : 

DiFFERENTIAIi  TONES  OF  THE  MAJOR  TRIADS. 

Triads, 

Differential 
Tones, 

Da. 

^2  :^ 

D6. Dc. 

Differential  Tones  of  the  Minor  Triads. 

Triads, 

Differential 
Tones, 

La. 
L&. Lc. 
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We  see  from  the  above  tables  that  the  Differentials  of  the  Major 
Triads  are  not  only  harmless  to  their  respective  chords,  but  actually 
improve  them,  supplying  as  it  were  a  natural  and  true  bass.  On 
the  other  hand,  in  the  Minor  Triads,  we  find  Differential  Tones  (f 
and  s  above)  that  are  entirely  foreign  to  the  chords.  They  are  not 
indeed  close  enough  to  beat,  nor  are  they  sufficiently  distinct  to 

destroy  the  harmony,  but  "  they  are  enough  to  give  a  mysterious, 
obscure  effect  to  the  musical  character  and  meaning  of  these  chords, 
an  effect  for  which  the  hearer  is  unable  to  accoimt,  because  the 
weak  differential  tones  on  which  it  depends  are  concealed  by  other 
louder  tones,  and  are  audible  only  to  a  practised  ear.  Hence  minor 
chords  are  especially  adapted  to  express  mysterious  obscurity  or 

harshness." 
It  must  be  remembered,  that  on  tempered  instruments,  the 

differentials  will  not  be  exactly  of  the  pitch  given  above, 
consequently  those  of  the  Major  Triads  will  not  fit  in  so  well  to  the 
chords.  Hence  the  superiority  of  Major  to  Minor  chords,  though 
still  perceptible  on  tempered  instruments,  is  not  so  marked  as  when 
the  intervals  are  justly  intoned. 

It  was  shown  in  the  last  Chapter,  that  either  tone  of  a 
Consonant  Interval  may  be  raised  or  lowered  by  an  Octave,  not 
indeed  without  somewhat  altering  the  degree  of  its  harmoniousness, 
but  without  losing  its  consonant  character.  By  thus  raising  or 
lowering  one  or  more  of  their  tones,  the  Consonant  Tiiads  may  be 
obtained  in  a  great  variety  of  distributions.  We  shall  proceed  to 
ascertain  theoretically,  the  more  harmonious  of  these  distributions, 
in  which  the  extreme  tones  of  the  Triad  are  within  the  compass  of 
two  Octaves. 

In  order  to  ascertaiD  the  more  harmonious  of  these  distributions 

of  tlie  six  fundamental  Triads,  we  shall  in  the  first  place  have  to 
bear  in  mind  the  rules,  concerning  the  enlargement  of  an  Interval 
by  an  Octave,  which  we  obtained  in  the  last  Chapter  (see  page  203) ; 
and  in  the  second  place,  we  shall  have  to  note  the  effect  of 
Differential  Tones.  These  two  considerations  will  be  sufficient  to 

guide  us  in  this  enquiry. 
With    regard    to    the    first,   it  will    be    convenient  to  briefly 

recapitulate  the  essential  part  of  the  results  on  page  203,  viz. — 
Minor  Tenths  are  inferior  to  Minor  Thirds. 
Elevenths  ,,  ,,  Fourths. 
Thirteenths       ,,  ,,  Sixths. 

but  the  Fifth  and  Major  Third  are  improved  by  being  enlarged  by 
an  Octave. 
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As  to  the  second  consideration  just  referred  to,  the  Differentials 
of  the  Consonant  intervals,  within  the  Octave,  have  been  already 
given  in  Chapter  XII.  It  will  be  convenient,  however,  to  give  them 
here  again,  together  with  those  of  all  the  other  Consonant  intervals, 
within  the  Compass  of  two  Octaves, 

TABLE  I. 

Interval 

Octave Fifth Twelfth Fourth Major 
3rd 

\>\1 \>\\ 

j                   1 
Differential           d         1  d|  or  1| 

d'  or  1 
d,  or  I2 

d. 

TABLE  11. 

Intervals 

Eleventh 
Minor 
3rd 

Major 
10th 

Major 
6th 

Minor 
6th 

(d'      (1' Is      (di (1      in< 

Differentials 
n  or  de' d^or  f^ s 

fi  or  d 

S| 

TABLE  III. 

Intervals 

Minor  10th 
Major  13th Minor  13th 

\:< sm: 

1: 

Differentials 
(approximately) 

V               V 

ta  or  pia 
V                V 
na'  or  ta 

>e' 
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Considering  in  the  first  place  the  distributions  of  the  Major 
Triads,  it  is  obvious  that  no  such  Triad  can  be  injured  by 
differential  tones  if  the  intervals  of  which  it  consists  occur  in 
Tables  I  or  11  above.  For  the  Differential  of  each  Interval  in 

Table  I  only  duplicates  one  or  other  of  the  Constituent  Tones  of  such 
interval ;  while  the  Differential  Tone  of  each  interval  in  Table  II 
will  either  coincide  with,  or  duplicate  the  tone  that  must  be  added 

to  that  intei-val,  to  make  it  a  Major  Triad.  On  the  other  hand, 
those  Triads  which  contain  either  of  the  intervals  in  Table  III, 
must  be  disturbed  more  or  less  by  their  differentials:  for  in  the 
first  place,  the  differentials  are  foreign  to  the  scale,  and  will 
consequently  sound  strange  and  disturbing;  and  secondly,  they 
may  produce  audible  beats  with  the  third  tone  of  the  Triad  or  one 
of  its  overtones,  as  for  example, 

Differentials 

\    d  ty     -*
' 

in  which  the  s'  will  dissonate  against  the  fe'. 

Both  the  rules  concerning  the  widening  of  the  Consonant 
Intervals,  and  the  Differentials  generated  by  such  Intervals, 
therefore,  teach  the  same  fact,  viz.:  that  in  selecting  the  most 
harmonious  distributions  of  the  Major  Triads,  the  following 
intervals  must  be  avoided. 

The  Minor  Tenth. 

The  Thirteenths. 

On  examining  all  the  possible  distributions  of  the  Major  Triad, 
within  a  compass  of  two  octaves,  and  rejecting  those  that  contain 
either  a  Minor  Tenth  or  a  Thirteenth,  the  following  Triads  appear 

the  more  harmonious,  the  differentials  being  shown  below : — 
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The  most  Pekfect  Distributions  of  the  Major  Triads. 

d< 
It  is  interesting  to  observe  how  closely  the  above  Triads,  taken  in 
conjunction  with  their  Differential  Tones,  approximate  to  an 
ordinary  Compound  Tone. 
The  other  Distributions  of  the  Major  Triads  are  those  that 

contain  the  intervals  forbidden  in  the  above.  They  all  generate 
unsuitable  Differentials,  which  without  making  them  dissonant, 
cause  them  to  be  slightly  rougher  than  those  just  considered.  The 
following  Table  contains  these  Triads,  together  with  the 
Differentials  they  generate. 

The  Less  Perfect  Distributions  of  the  Major  Triads. 

8 9 10 
11 12 
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ta 
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In  the  last  two,  the  Differentials  actually  produce  beats,  causing 
them  to  be  much  the  least  pleasing ;  in  fact,  they  are  rougher  than 
the  better  distributions  of  the  Minor  Triad. 

We  have  now  to  ascertain  the  more  advantageous  positions  of  the 

Minor  Triads.     Taking   }  d'   mi._*ZZ  as  the  type  of  a  Minor 

Triad,  and  keeping  within  the  compass  of  two  Octaves,  the  3rd  and 
root  of  the  Triad  must  have  one  or  other  of  the  following  positions 

Minor  3rd.  Minor  10th.  Major  6th.  Major  13th. 

But  from  Table  II  and  III,  page  213,  we  see  that  these  intervals 

generate  respectively  the  following  Differentials — 

in 
na 

f,  m-^m 

dim— 

the  second  and  fourth  of  which  are  foreign  to  the  scale,  while  the 
first  and  third  do  not  belong  to  the  Minor  Triad  in  question.  It 
follows  therefore,  that  every  Minor  Triad  must  generate  at  least 
one  disturbing  Differential  tone. 

Further,  in  order  that  there  may  be  only  one  such  Differential, 

the  inteivals  which  "  n  "  makes  with  both  the  "  1  "  and  the  "  d  "  in 
the  above  four  intervals,  must  be  selected  from  those  in  Table  I, 

page  213  ;  for  if  it  form  with  the  "  1 "  or  "  d  "  any  of  the  intervals 
of  Tables  II  and  IH,  page  213,  other  differentials  not  belonging  to 
the  Minor  chord  will  be  introduced.  On  examination  it  will  be 

found,  that  the  following  are  the  only  three  distributions  of  the 
Minor  Triad  that  answer  this  test,  that  is,  which  have  only  one 
disturbing  Differential  Tone. 



CHORDS. 
217 

The  More  Perfect  Distributions  of  the  Minor  Triads. 

n' 

d' 

1    tj 

d' 

1|    e 

na 

d, 

The  other  distributions  which  do  not  sound  so  well  are — 

The  Less  Perfect  Distributions  of  the  Minor  Triad. 
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In  testing  the  results  of  this  theoretical  investigation,  the  student 
must  be  again  reminded,  that  all  the  above  intervals  are  supposed 
to  be  in  just  intonation.  On  a  tempered  instrument,  the 
Combination  Tones  will  be  very  different  from  those  given  above. 

Consonant  Tetrads. 

If  one  of  the  tones  of  a  consonant  Triad  be  duplicated  by  adding 
its  Octave,  a  consonant  Tetrad  or  chord  of  four  tones  is  obtained. 
A  great  variety  of  chords  may  be  thus  formed,  and  the  method  of 
investigating  them,  which  we  adopted  in  the  case  of  the  six  original 
Triads,  that  is,  by  setting  out  the  partials  of  each  tone,  would  be 
somewhat  laborious.  Nevertheless  this  method  is  occasionally 
convenient,  especially  when  two  or  three  chords  only  have  to  be 
compared  with  one  another.  As  an  example,  we  will  compare  the 
following  two  Tetrads,  the  fundamentals  being  supposed  to  be  of 
the  same  pitch,  say  D. 

Fig  87  shows  the  full  partials  of  each  tone,  up  to  the  6th  in  the 
Bass,  5th  in  the  Tenor,  4th  in  the  Contralto,  and  3rd  in  the  Soprano, 
tone  dissonances  being  connected  by  a  single,  and  semitone 
dissonances  by  a  double  line,  as  before;  while  below  are  given 
the  Differentials  generated  by  the  four  fundamentals  of  each  chord. 
The  following  is  a  summary  of  the  partial  dissonances  : 

I  II 

/   2  against  3  2  against  3 

Semitone  |  2  ,,       5 
(  4  „       6 

(    1       „       8  2       „       3 Tone 

(    2 
4 
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/ 
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n, 

/ 

./ 

d, 

s    ̂ -  s 

\  n, 

d,  d|  S|  n  8  (Differentials)  83  d,,  ta,  d|  S|  ti 
Fjo.  87. 
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Thus,  as  far  as  the  paitials  go,  the  balance  is  largely  in  favour  of 
No  1.  The  differentials  tell  the  same  tale;  for  four  of  those  m 

No.  1  are  identical  with  pai-tial  tones,  and  the  other  rather  improves 
tie  chord  than  otherwise.  On  the  other  hand  the  "^ta^  in  No  2  is 
decidedly  detrimental,  for  not  only  is  it  foreign  to  the  chord,  but, 
being  at  such  a  low  pitch,  it  will  produce  audible  beats  with  d|. 

In  order  to  obtain  some  general  results  concerning  these  four-part 
chords,  it  will  be  better  to  apply  the  results  that  were  arrived  at  in 
the  case  of  the  Triads. 

Taking  the  Major  Tetrads  first,  the  following  may  be  selected  as 
a  typical  chord. 

i  ̂  
The  rule  in  the  case  of  the  Major  Triads  was,  to  avoid  Thirteenths 
and  Minor  Tenths.  In  transposing  the  tones  of  the  above  chord, 

therefore,  and  keeping  within  the  compass  of  two  Octaves,  the  "s" 
must  not  be  more  than  a  Minor  Third  above  the  '*  n,"  othei*wise  a 
Minor  Tenth  will  bo  formed;  nor  must  the  "s"  be  transposed 
more  than  a  Sixth  below  the  "n,"  or  a  Major  Thirteenth  will 
occur ;  lastly  the  "  d  "  must  not  be  more  than  a  Minor  Sixth  above 
*'  n,"  if  we  wish  to  avoid  making  a  Minor  Thirteenth,  but  it  may 
be  placed  as  far  below  it  as  we  please.  These  rules  may  be  briefly 

enunciated  in  the  words  of  Helmholtz  : — "  Those  Major  chords  are 
most  hai*monious,  in  which  the  Eoot  or  the  Eifth  does  not  lie  more 
than  a  Sixth  above  the  Third,  or  the  Fifth  does  not  lie  more  than  a 

Sixth  below  it." 

It  follows  from  this,  that  the  *'n"  and  **s"  must  not  be 
duplicated  by  the  Double  Octave.  There  is  another  reason  for  this 
rule,  however,  namely  that  the  differentials  thus  generated,  will 
interfere  with  the  other  tones  of  the  chord ;  thus— 

( n'  (8' 
( ri,  (St 

Differentials  t  r* 

In   the  first   case   the   "t"  will  beat  with  the   "  d" "   and  the 
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**  r' "   with  both   "d'"   and    "n'";     the    first    being   the    more 
objectionable. 

The  following  are  the  Distributions  of  the  Major  Tetrads  within 
the  compass  of  two  Octaves,  which  contain  no  Thirteenths  or  Minor 
Tenths,  and  which  therefore  have  no  disturbing  Differential  Tones. 

The  Most  Perfect  Distributions  of  the  Major  Tetrads 

within  the  compass  of  two  octaves. 
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"We  see  from  this,  that  the  tones  of  a  Major  chord  in  its  First 
Inversion  or  "6"  position  must  lie  closely  together  as  in  7;  that 
the  tones  of  a  Major  chord  in  the  Second  Inversion  or  "  c  "  position 
must  not  have  a  greater  compass  than  an  Eleventh,  as  in  5,  6,  and 
11 ;  but  that  to  Major  chords  in  their  normal  position  more  freedom 
may  be  allowed. 

With  regard  to  Minor  Tetrads,  we  have  already  seen  that  they 
must  have  at  least  one  false  differential  tone.  The  only  Minor 
Tetrad  with  but  one  such  Differential  is  No  1  in  the  Table  below, 
which  has  the  false  differential  f  and  its  double  octave  f.,.  The 

remaining  Minor  Tetrads  may  contain  two,  three,  or  even  four  disturb- 
ing differentials.  The  following  Table  contains  all  those  within  the 

compass  of  two  Octaves,  which  generate  only  two  false  differentials; 
such  differentials  only  being  shown. 
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Best  Distributions  of  Minor  Tetrads. 
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From  this  Table  it  is  evident,  that  a  Minor  chord  in  its  Second 

Inversion  or  *'  c  "  position,  must  have  its  tones  close  together  as  in 
5  ;  that  the  tones  of  the  First  Inversion  or  **  &  "  position  must  be 
within  a  Major  Tenth,  as  in  3,  6,  and  9. 

"We  bring  this  discussion  to  a  conclusion  with  an  extract  from 
the  Chapter  on  Transposition  of  chords  in  Helmholtz'  work,  from 
which  the  present  Chapter  has  been  largely  taken. 

'*  In  musical  theory,  as  hitherto  expounded,  very  little  has  been 
eaid  of  the  influence  of  the  Transposition  of  chords  on  harmonious 

effect.  It  is  usual  to  give  as  a  rule  that  close  intei*vals  must  not 

be  used  in  the  bass,  and  that  the  intei-vals  should  be  tolerably 
evenly  distributed  between  the  extreme  tones.  And  even  these 
rules  do  not  appear  as  consequences  of  the  theoretical  views  and 
laws  usually  given,  according  to  whicn  a  consonant  interval 
remains  consonant  in  whatever  part  of  the  scale  it  is  taken,  and 
however  it  may  be  transposed  or  combined  with  others.  They 
rather  appear  as  practical  exceptions  from  general  rules.  It  was 
left  to  the  musician  himself  to  obtain  some  insight  into  the  various 
effects  of  the  various  positions  of  chords,  by  mere  use  and 
experience.     No  rule  could  be  given  to  guide  him. 
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•*  The  subject  has  been  treated  here  at  such  length  in  order  to 
show  that  a  right  view  of  the  cause  of  consonance  and  dissonance 
leads  to  rules  for  relations  which  previous  theories  of  harmony 
could  not  contain.  The  propositions  we  have  enunciated  agree, 
however,  with  the  practice  of  the  best  composers,  of  those,  I  mean, 
who  studied  vocal  music  principally,  before  the  great  development  of 
instrumental  music  necessitated  the  general  introduction  of  tempered 
intonation,  as  anyone  may  easily  convince  himself  by  examining 
those  compositions  which  aimed  at  producing  an  impression  of 
perfect  harmony.  Mozart  is  certainly  the  composer  who  had  the 
surest  instinct  for  the  delicacies  of  his  art.  Among  his  vocal 
compositions  the  Ave  verum  corpus  is  particularly  celebrated  for  its 
wonderfully  pure  and  smooth  harmonies.  On  examining  this  little 
piece  as  one  of  the  most  suitable  examples  for  our  purpose  we  find 
in  its  first  clause,  which  has  an  extremely  soft  and  sweet  effect, 
none  but  Major  chords,  and  chords  of  the  dominant  Seventh.  All 
these  Major  chords  belong  to  those  which  we  have  noted  as 
having  the  more  perfect  positions.  Position  2  occurs  most 
frequently,  and  then  8,  10,  1,  and  9.  It  is  not  till  we  come  to  the 
final  modulation  of  this  first  clause  that  we  meet  with  two  minor 

chords,  and  a  major  chord  in  an  unfavourable  position.  It  is  very 
striking,  by  way  of  comparison,  to  find  that  the  second  clause  of 
the  same  piece,  which  is  more  veiled,  longing,  and  mystical,  and 
laboriously  modulates  through  bolder  transitions  and  harsher 
dissonances,  has  many  more  minor  chords,  which,  as  well  as  the 
major  chords  scattered  among  them,  are  for  the  most  part  brought 
into  unfavourable  positions,  until  the  final  chord  again  restores 
perfect  harmony. 

•*  Precisely  similar  observations  may  be  made  on  those  choral 
pieces  of  Palestrina,  and  of  his  contemporaries  and  successors, 
which  have  simple  harmonic  construction  without  any  involved 
polyphony.  In  transforming  the  Eoman  Church  music,  which  was 

Palestrina's  task,  the  principal  weight  was  laid  on  harmonious 
effect,  in  contrast  to  the  harsh  and  unintelligible  polj'phony  of  the 
older  Dutch  system,  and  Palestrina  and  his  school  have  really 
solved  the  problem  in  the  most  perfect  manner.  Here  also  we  find 
an  almost  uninterrupted  flow  of  consonant  chords,  with  dominant 
Sevenths,  or  dissonant  passing  notes,  charily  interspersed.  Here 
also  the  consonant  chords  wholly,  or  almost  wholly,  consist  of  those 
major  and  minor  chords  which  we  have  noted  as  being  in  the  more 
perfect  positions.  But  in  the  final  cadence  of  a  few  clauses,  on  the 
contrary,   in    the    midst    of    more  powerful  and  more  frequent 
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dissonances,  we  find  a  predominance  of  the  unfavourable  positions 
of  tlie  major  and  minor  chords.  Thus  that  expression  which 
modem  music  endeavours  to  attain  by  various  discords  and  an 
abundant  introduction  of  dominant  Sevenths,  was  obtained  in  the 
school  of  Palestrina  by  the  much  more  delicate  shading  of  various 
transpositions  of  consonant  chords.  This  explains  the  deep  and 
tender  expressiveness  of  the  harmony  of  these  compositions,  which 
sound  like  the  songs  of  angels  with  hearts  affected  but  undarkened 
by  human  grief  in  their  heavenly  joy.  Of  course  such  pieces  of 
music  require  fine  ears  both  in  singer  and  hearer,  to  let  the  delicate 
gradation  of  expression  receive  its  due,  now  that  modem  music  has 
accustomed  us  to  modes  of  expression  so  much  more  violent  and 

drastic." 
"The  great  majority  of  Major  Tetrads  in  Palestrina's  '  Stabat 

Mater'  are  in  the  positions  1,  10,  8,  5,  3,  2,  4,  9,  and  of  minor 
tetrads  in  the  positions  9,  2,  4,  3,  5,  1.  For  the  major  chords  one 
might  almost  think  that  some  theoretical  rule  led  him  to  avoid  the 
bad  intervals  of  the  Minor  Tenth  and  the  Thirteenth.  But  this 

rule  would  have  been  entirely  useless  for  minor  chords.  Since  the 
existence  of  combinational  tones  was  not  then  known,  we  can  only 
conclude  that  his  fine  ear  led  him  to  this  practice,  and  that  the 
judgment  of  his  ear  exactly  agreed  with  the  rules  deduced  from  our 
theory. 

'*  These  authorities  may  serve  to  lead  musicians  to  allow  the 
correctness  of  my  arrangement  of  consonant  chords  in  the  order  of 
their  harmoniousness.  But  anyone  can  convince  himself  of  their 
correctness  on  any  justly  intoned  instrument.  The  present  system 
of  tempered  intonation  certainly  obliterates  somewhat  of  the  more 

delicate  distinctions,  without,  however,  entirely  destroying  them." 

Summary. 

Triads  in  their  closest  distribution. 

Major  Triads  are  smoother  or  more  harmonious  than  Minor 
Triads,  because  their  differential  tones  form  part  of  the  chord, 
which  is  not  the  case  with  the  Minor  Triads. 

A  triad  is  not  equally  smooth  in  its  three  positions ;  arranged  in 
the  order  of  their  smoothness,  we  have  for 
Major  Triads, 

Ist    (c)  position  or  2nd  inversion,  as :  Dc,  Sc,  Fc. 
2nd  (a)  ,,        normal  triad,     ,,     Da,  Sa,  Fa. 
3rd  {b)  „        1st  inversion,    ,,     Db,  S6,  Fh. 
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Minor  Triads. 

1st    (&)  position  or  1st  inversion  as  L&,  E&,  M&. 

2nd  (a)  ,,  normal  triad,  ,,   La,  Ea,  Ma. 
3rd  (c)  ,,  2nd  inversion,  ,,   Lc,  Ec,  Mc. 

Triads  in  various  distributions. 

The  smoothest  distributions  of  the  Major  Triads  are  those  in 
which  Thirteenths,  and  Minor  Tenths  are  absent. 

The  smoothest  distributions  of  the  Minor  Triads  are  the  following, 
taking  L  as  the  type. 

^  lfi= 
Tetrads. 

Those  Major  Tetrads  are  most  harmonious  in  which  the  Eoot  or 
Fifth  does  not  lie  more  than  a  Sixth  above  the  Third ;  or  the  Fifth 
does  not  lie  more  than  a  Sixth  below  it. 

To  take  the  D  chord  for  example,  those  distributions  are 
smoothest  in  which  the  d  does  not  lie  more  than  a  Sixth  above  the 

n ;  and  in  which  the  s  does  not  lie  more  than  a  Sixth  above  or 
below  the  same  note  ;  therefore 

The  Tones  of  Major  Tetrads  in  the  h  position  should  lie  as 
closely  together  as  possible :  and  in  the  c  position  the 
extreme  compass  of  the  chord  should  not  exceed  an 
Eleventh. 

The  tones  of  a  Minor  Tetrad  in  the  c  position  should  be  as 
closely  together  as  possible;  and  in  the  h  position,  the 
extreme  compass  of  the  chord  should  not  exceed  a  Major 
Tenth. 

In  this  Chapter,  a  chord  has  been  scientifically  studied  as  a  thing 
hy  itself;  in  the  art  of  music  it  is  generally  also  considered  in 
relation  to  what  goes  before  and  after ;  where  the  requirements  of 
Art  do  not  accord  with  those  of  Science  in  this  respect,  the  latter 

must  give  way  to  the  foi-mer. 
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CHAPTER    XVIII, 

Temperament. 

In  Chap.  V,  we  saw  how,  by  means  of  Helinhbltz's  Syren,  it  may 
be  proved,  that,  for  two  tones  to  be  at  the  interval  of  a  Fifth,  it  is 
requisite  that  their  vibration  numbers  be  in  the  ratio  of  3:2;  and 
that  for  two  tones  to  form  the  interval  of  a  Major  Third,  their 
vibration  numbers  must  be  as  5  ;  4. 

In  Chap.  XV  we  have  seen  the  reason  for  this;  the  vibration 
numbers  must  be  exactly  in  these  ratios,  in  order  to  avoid  beats, 
between  Overtones  on  the  one  hand,  and  Combination  Tones  on  the 
other. 

The  vibi*ation  numbers  of  the  tones  of  each  of  the  Major  Triads 

j  m ,    j  t ,    j  1  ,  being  therefore  in  the  ratios  6:5:4;  the  vibration 

numbers  of  all  the  tones  of  the  diatonic  scale  can  be  readily 
calculated  on  any  given  basis,  after  the  manner  shown  in  Chap.  V 
(which  the  student  is  recommended  to  read  again,  before  proceeding 
with  the  present  chapter).  There,  288  having  been  chosen  as  the 
vibration  number  of  d,  the  vibration  numbers  of  the  other  notes 
were  found  to  be  as  follows  :  j 
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576  =  d', 

540 

324  =  1 

288  =  d 

The  vibration  ratios  of  the  intervals  between  the  successive  notes 
were  then  calculated  from  the  numbers  thus  obtained,  and  were 
found  to  be  those  given  above. 

The  Fifths  which  can  be  formed  from  these  tones  are : 

s     (1     ft     Jd'     Cr'     (n'     ( f ' d     ir     (n     (f      Is      |l      (f 
If,  from  the  vibration  numbers  above,  the  vibration  ratio  of  each 
of  these  Fifths  be  calculated,  it  will  be  found  that  each  of  the 
following  five  intervals  has  the  exact  vibration  ratio  of  3  :  2  ;  thai 
is  to  say,  the  following  are  Perfect  Fifths : 

(8     (t     fd'     (r' U     (n     (f     >s 
Thus,  for  example, 

(t    _     540    _ 

/n     "     360     ~ 
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The  remaining  two  are  exceptions ;  for  from  the  vibration  numbers 
above  we  have 

(  f     _     768    _     64  i  1     _    "^^^    _ 

rt~540~45  fr~324~ 

40 

27* 

Again,  the  Minor  Thirds  that  can  be  formed  from  the  notes  of 
the  diatonic  scale  are  : 

r     (n     (1      (f 

If,  as  above,  the  vibration  ratios  of  these  intervals  be  calculated,  it 
will  be  found  that  the  following  three  are  true  Minor  Thirds,  that 
is,  the  vibration  numbers  of  their  constituent  tones  are  in  the  exact 
patio  of  6  :  5 : 

The  other  interval  is  not  a  true  Minor  Third,  for : 

If    _    384    _    32 

fr    ~    324    ~    27* 

Of  these  three  exceptions,  we  may  at  once  dismiss  j  J'  as  being 
a  well  recognized  interval,  the  Diminished  Fifth,  less  by  a  Semitone 
than  the  Perfect  Fifth,  for  which  it  is  not  likely  to  be  mistaken. 
But  it  is  otherwise  with  the  other  two ;  they  are  very  nearly  a 
Perfect  Fifth  and  a  true  Minor  Third,  respectively,  for  as  we  have 

just  seen 

1    _     120  3    _     120 

r~~'8r^    ®2~"80" 

,f  32  96       ,.,     6  96 
and<       =    —    =    —    while  -    =    — 
r  27  81  5  80 

The  imperfection  of  these  intervals  will  be  best  seen  by  sketching 

^he  Compound  Tones  of  j ,  up  to  the  beating  partials,  taking  the 
vibration  numbers  given  above ;  thus, — 
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972    =     1' 

648    =    r' 

324    =    r 

■1'     =    960 

=     480 

Wc  see  from  this,  that  with  these  vibration  numbers,  the  mistuned 

Fifth  j  J.  produces  972  —  960  =  12  beats  per  second,  between  the 
2nd  and  3rd  partials. 

Similarly,  with  the  mistuned  Minor  Third  j  J ;  taking  r  =  324, 
24  beats  per  second  would  be  heard. 

It  is  obvious,  therefore,  that,  although  one  might  fail  to  perceive 
that  the  r  of  the  scale  is  not  in  tune  with  f  and  1  as  long  as  we  are 

concerned  with  melody  only ;  j^et  as  soon  as  these  tones  are  sounded 
together,  the  discordance  becomes  very  conspicuous.  For  true 
harmony,  therefore,  another  tone  is  required  in  the  scale,  to  form  a 

Perfect  Fifth  with  1.  Calling  this  tone  rah  (r),  we  can  deduce  its 
vibration  number  in  the  scale  above  from  the  fact  that 

hJ  = 
For  1  =  480,  therefore 

3  x\ 
2  X  480 

V         2  X  480 

and  thus  r  =   ;   =    320 o 

This  tone  not  only  forms  a  Perfect  Fifth  with  1,  but  also  a  true 
Minor  Third  with  f ,  for 

i   f  _  384  _  6 
^^r"~320~6 

The  relations  of  r  with  the  adjacent  tones,  which  the  student  can 
readily  calculate  for  himself,  are  as  follows : 
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The  interval  between    j  v J  is  termed  a  comma,  its  vibration  ratio 
being  i^  =  |±. 

In  harmony,   r  is  required  in  the  Minor  Chord  j  vf  and  its  iu- 
t ;   but  even  in  melody,  r 

sounds  better  than  r  after  the  tones  f  and  1,  and  similarly  r 
better  than  r  after  s  and  t. 

It  will  be  seen,  therefore,  that  in  order  to  execute  a  piece  of 
music  which  is  entirely  in  one  key,  say  C  Major,  and  which  has  no 
Chromatics,  we  should  require  eight  tones  to  the  Octave,  viz.,  the 
eight  tones  given  in  the  middle  column  of  fig.  88.  If,  however, 
the  piece  of  music  in  question  changes  key,  we  shall  require  other 
tones.  Suppose  in  the  first  place  it  passes  into  the  First  Sharp  key. 
The  s  of  the  middle  column,  that  is,  the  dominant  of  the  original 
key,  then  becomes  the  d,  or  tonic  of  the  First  Sharp  key,  as  shown 
in  the  right-hand  column  of  fig.  88      Proceeding  upwards  from  the 

tone  d,  we  find  that  the  r  and  n  of  this  key  will  correspond  to  the 
1  and  t  of  the  original  key,  but  a  new  tone  will  be  required  for  r. 
Going  downwards  the  1|,  S|,  and  f|  of  the  new  key  correspond  to 
the  n,  r,  and  d  of  the  old,  but  a  new  tone  will  be  necessary  for  t|. 
Thus  if  the  music  passes  into  the  First  Sharp  key,  two  more 
tones  will  be  required. 

For  a  change  into  the  First  Flat  key,  two  new  tones  will  also  be 
wanted.  For  in  this  case,  the  f  of  the  original  key,  becomes  the  d 
of  the  First  Flat  key,  as  shown  in  the  left-hand  colunm  of  fig.  88. 
Ascending  from  this  d,  the  r  and  n  of  the  new  key  will  correspond 
exactly  to  the  s  and  1  of  the  original  one,  but  new  tones  will  be 
V  V 

necessary  for  r  and  f .     Descending,  the  n,  r,  and  d  of  the  original 
key  will  serve  for  the  ti,  li  and  Si  of  the  now  one. 
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t —   n 

i   \  k 

r   8   d 

d   f  i 

t,   n   i, 

s,   d   f , 

Fio.  88. 

The  changes  of  key  in  modern  music,  are,  however,  rarely 
confined  to  the  above,  and  are  often  very  extensive.  A  study  of 
fig.  89  will  show  that  in  general  every  change  of  key  of  one  remove 
either  to  the  right  or  left  of  the  central  key,  requires  two  new 
tones.  Thus  starting  in  0  Major  without  Chromatics,  8  tones  are 
required  to  the  octave ;  on  passing  into  Gr,  two  new  tones  are 
required ;  on  further  changing  to  D  two  more  will  be  wanted , 
passing  from  this  into  A  two  more  have  to  be  brought  forward, 
while  if  the  music  then  enters  the  key  of  E,  all  the  tones  of  this 
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key  will  be  of  different  pitches  to  thos(3  in  the  original  key  C.  We 
have  supposed  here,  that  the  music  passes  gradually  through 
the  keys  of  G,  D  and  A ;  of  course,  if  the  change  be  a  sudden  one 
from  C  to  E,  the  case  would  be  somewhat  different ;  The  E  of  the 
central  column  would  become  the  d  of  key  E,  the  A  would  become 
its  f ,  the  B  its  s  ;  only  five  new  tones  being  therefore  required  for 
this  key.     It  may  be  also  noticed,  that  the  E  and  B  of  the  centre 

column  are  not  of  exactly  the  same  pitch  as  the  E  and  B  of  last  column 

on  the  right,  which  are  derived  by  transition  through  the  inter- 
mediate keys ;  the  latter  being  one  comma  higher  than  the  foimer. 

Similarly  each  transition  to  the  left  of  the  central  key  requires 
V  V  V 

two  new  tones.  Further,  the  Eb,  Ab,  and  D|7  of  the  extreme  left 

hand  columns,  are  not  of  the  same  pitch  as  the  Eb,  A\),  'D\)  of  the central  column,  but  are  one  comma  flatter. 

Thus  to  perform  music,  which  modulates  through  the  major  keys  of 
fig.  89,  in  the  major  mode  only,  requires  a  very  large  number  of 
tones  to  the  Octave.  If  to  this,  the  minor  mode  be  also  added,  a 
still  larger  number  is  necessar5\  Moreover,  there  are  many  more 
keys  than  those  of  fig.  89  used  in  modern  music,  so  that  the  student 
will  readily  perceive  that  the  number  of  tones  to  the  Octave,  thus 
required  in  modern  music,  is  very  large  indeed. 

All  this  presents  no  difficulty  in  the  case  of  the  voice,  which  is 

capable  of  producing  tones  of  every  possible  gi-adation  of  pitch 
within  its  compass,  and  which,  governed  by  the  ear,  readily  foims 
the  tones  necessary  to  perfect  harmony.  Nor  does  it  present  any 
real  difficulty  in  the  violin  class  of  instruments,  which  also  may  be 
made  to  emit  tones  of  every  gradation  of  pitch  within  their  compass. 
The  real  difficulty  is  met  with  in  such  instruments  as  the  Organ, 
Harmonium,  Piano,  &c.,  which  have  fixed  tones,  and  consequently 
only  possess  a  certain  limited  number  of  notes.  On  these  instru- 

ments, which  have  but  few  notes  to  the  Octave  (generally  only 
twelve),  it  is  obviously  impossible  to  execute  music  written  in 
various  keys  and  modes,  in  true  intonation.  The  only  thing  that 
can  be  done  is  so  to  tune  the  fixed  notes  of  the  instrument,  that  the 
imperfections  shall  be  as  small  as  possible.  The  problem  therefore 
is : — how  so  to  tune  an  instrument,  with  but  twelve  tones  to  the 
Octave,  as  to  be  able  to  play  in  various  keys  and  modes,  with  the 
smallest  amount  of  imperfection.  Any  system  of  tuning  by  which 
this  is  brought  about,  is  called  a  Temperament,  and  the  false 
intervals  thus  obtained  are  termed  tempered  intervals. 
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Dt?      A!?      Bb      B>        F      0        G       D        A        E        b' 
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..    f 
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t|....n,....l|  ...r 

d....f,  t|....n|....l|....r, 

vr|....S|...  d...  f, 
t|....n|....l,....r, 

Fio.  89. 

There  are  many  possible  Temperaments,  but  only  two  are  of  any 
practical  importance :  Mean-Tone  Temperament  and  EqusJ 
Temperament. 
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Mean-Tone  Temperament. 

This  was  the  temperament  used  in  tuning  the  Organ  until  about 
1840.     Its  principle  will  be  seen  from  the  following  considerations. 

Starting  with  C|  and  tuning  upwards  four  true  Fifths  consecu 
tively  we  obtain  the  following  notes : 

but  as  the  Fifth  j  ̂  is  a  true  one,  while  the  j  p  of  the  diatonic 
scale  is,  as  we  have  already  seen,  smaller  by  a  comma  than  a  true 

Fifth,  the  A  in  the  above  will  be  a  comma  sharper  than  the  A  of 

the  perfect  scale.  Consequently  the  E'  will  also  be  sharper  by  a 
comma  than  the  E'  two  octaves  above  the  E|  which  makes  a  true 
Major  Third  with  C,. 

Using  the  vibration  ratios,  we  may  put  the  same  thing  thus. 

The  interval  between  0|  and  E'  in  the  above  is  the  sum  of  four  true 
Fifths,  that  is 

3  3  3  3    __    81 
2  2  2  2  16 
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The  interval  between  C|  and  E'  is  the  sum  of  two  Octaves  and  a 
Major  Third,  that  is 

2  2  5     _     20  8C 

1^1^4"~T^T6 

Thus  the  interval  between  E'  and  E'  is  the  difference  between  the 
above, viz 

81 
16 

80 
16 81 

~"     
16 

X 
16 

80 

81 

~~    
80 

that  IS, a  comma. 

Now in the  Mean-Tone Temperament,  each  of  the  four  Fifths 

above  is  flattened  a  quarter  of  a  comma,  and  consequently  the  E' 
thus  obtained  forms  a  perfectly  true  Major  Third  with  the  C 
Thus,  starting  with  0  and  tuning  upwards  two  of  these  flattened 

Fifths,  and  a  true  Octave  down,  we  obtain  the  notes  C,  Q-,  and  D ; 
then  again  starting  from  this  D,  and  tuning  up  two  of  these  Fifths, 
and  another  Octave  down,  we  get  the  additional  notes  A  and  E,  all 

the  Fifths  being  a  quarter  of  a  comma  flat,  but  j  ̂  being  a  true 
Major  Third. 

Now  if  we  start  from  E,  and  repeat  this  process,  that  is,  tune  two 
of  these  flattened  Fifths  up,  and  an  Octave  down,  and  again  two 
flat  Fifths  up,  and  an  Octave  down,  we  shall  have  obtained 
altogether  the  following  notes : 

C 

B 

A 

0 

E 

D 

0 



236  HAND-BOOK  OF  ACOUSTICS. 

the  03  thus  necessarily  forming  a  true  Major  Third  with  E.  Now 

in  the  above  |  ̂  is  a  true  Fifth  less  a  quarter  of  a  comma  ;  but  |  5 

is  a  true  Major  Third;  therefore  !§  is  a  true  Minor  Third  less  a 

quarter  of  a  comma.  Again,  |  ^  is  a  true  Fifth  less  a  quarter  of  a 

comma,  but  it  has  just  been  shown  that  I  ̂  is  a  true  Minor  Third 

less  a  quarter  of  a  comma;  therefore  j  ^  is  a  true  Major  Third. 
In  a  similar  manner,  it  may  be  shown  successively,  that  all  the 
other  Major  Thirds  in  the  above  are  true  intervals,  and  that  all  the 
Minor  Thirds  are  flatter  by  a  quarter  of  a  comma,  than  true  Minor 
Thirds. 

Now,  starting  from  C,  and  tuning  two  Fifths,  each  flattened  by  a 
quarter  of  a  comma,  downwards,  and  an  Octave  up :  again  two  flat 
Fifths  down  and  an  Octave  up,  the  following  additional  tones, 
printed  in  italics  below,  are  obtained : 

C 

B 

A 

G 

n 
F 

E 

D 

c 
the  A|?  thus  necessarily  forming  a  true  Major  Third  with  C. 
We  should  have  to  obtain  several  more  tones,  in  this  way,  to  form 

a  complete  scale  in  this  temperament,  but,  as  we  are  supposing  but 
12  tones  to  the  Octave,  we  must  stop  here;  in  fact,  we  have  already 
exceeded  that  number,  and  must  throw  out  either  G:Jf  or  A^;  we  will 
suppose  the  former. 

Now,  in  the  above  j  ^'  is  a  true  Fifth  less  a  quarter  of  a  comma, 
and  as  we  have  just  seen  j  ^J,  is  a  true  Major  Third,  therefore  j  ^,' 
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IS  a  true  Minor  Third  less  a  quarter  of  a  comma.  Again,  |  ̂  is  a 
true  Fifth  less  a  quarter  of  a  comma,  but  we  have  just  shown  that 

j  ̂  is  a  true  Minor  Third  less  the  same  amount,  therefore  j  ̂  is  a 
true  Major  Third.  Proceeding  upwards  in  this  way  it  may  be 
shown  that  all  the  Major  Thirds  in  the  above  are  true  intervals  except 

I  E^  1  q{  I  fJ  if '  ̂̂ ^  ̂ ^®  ̂ ^^^^  Thirds  are  flatter  than  the  corre- 
sponding true  intervals  by  a  quarter  of  a  comma.  Further,  since 

the  Octaves  and  Major  Thirds  are  true  intervals,  it  follows  that  all 
the  Minor  Sixths  (except  four)  must  be  true  also.  Again,  since  the 
Fifths  and  Minor  Thirds  are  flatter  than  the  corresponding  true 
intervals  by  a  quarter  of  a  comma,  it  follows  that  the  Fourths  and 
Major  Sixths  must  be  sharper  than  the  corresponding  true  intervals 
by  the  same  amount. 

We  have  seen  that  the  D  in  the  above  is  derived  from  C,  by 
tuning  upwards  successively,  two  true  Fifths,  each  less  a  quarter 
of  a  comma,  and  then  an  Octave  down.  Now  the  E,  A,  and  B  above 

are  derived  in  exactly  the  same  manner  from  the  D,  G,  and  A, 

respectively.  Consequently  the  four  intervals  j  ̂  j  ̂  j  ^  and  [  J 
are  precisely  similar.  Moreover,  it  is  easy  to  show  that  the  interval 

I  p  is  similar  to  these  four ;  for  since  |  ̂  and  |  ̂  have  been  shown 

to  be  true  Major  Thirds,  they  are  equal  to  one  another;  take 

away  the  j  ^  from  each,  and  the  remaining  intervals  j  ^  and  j  J 

must  be  equal.  Thus  in  Mean-Tone  Temperament,  there  is  no  dis- 

tinction between  the  Greater  and  Smaller  step — between  the  | 

and  Lo  interval.  The  Major  Third,  j  ^  for  example,  is  composed 

of  two  precisely  equal  intervals,  j  J  and  j  ^,  the  r  being  exactly 
midway  between  the  two  tones  n  and  d.  The  vibration  number  of 
this  r  would  thus  be  the  geometrical  mean  of  the  vibration  numbers 
of  d  and  r\.  It  is  from  this  circumstance  that  the  term  Mean-Tone 

Temperament  is  derived. 

In  the  above,  we  have  seen  that  |  £'  is  a  true  Minor  Sixth  and  its 
vibration  ratio  is  consequently  f :  we  have  also  seen  that  |  S^  is  a 
true  Major  Third,  and  its  vibration  ratio  is  \:  therefore  the  vibration, 

ratio  of  j  qI  is 

8      ,      5     _     8  4     _     32 

5*4  5  5  25 

But  j  2jy,  as  we  have  seen,  is  a  true  Major  Third  and  its  vibration. 
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ratio  is  |.  Thus  the  Ab  and  Q^  above  are  tones  of  different  pitch, 

and  j  ̂  cannot  therefore  be  a  true  Major  Third.  Consequently  in 
Mean-Tone  Temperament  if  the  number  of  tones  to  the  Octave  be 
restricted  to  12,  the  Major  Thirds  cannot  all  be  true. 

With  the  scale  constructed  as  above,  the  Major  Thirds  in  the  major 
keys  of  C,  G,  D,  F,  BI7  and  E|7  are  true,  but  the  more  remote  keys  will 
have  one  or  more  of  their  Major  Thirds  false;  for  example,  the 

dominant  chord  of  A  would  have  to  be  played  as   j  Ap  and  as  we 

have  just  seen  j^"  is  not  a  true  Major  Third. 
Instruments  of  12  tones  to  the  Octave,  tuned  in  Mean-Tone 

Temperament  as  above,  can  thus  only  be  used  in  C  and  the  more 
nearly  related  keys,  viz.,  in  E>,  B7,  F,  G  and  D  Major,  and  C,  G, 
and  D  Minor:  or  if  Gjf  be  retained  instead  of  A!?,  in  B7,  F,  C,  G, 
D  and  A  Major  and  G,  D  and  A  Minor.  The  other  keys, 

which  are  more  or  less  discordant,  used  to  be  termed  *'  Wolves." 

Of  course  in  these  "wolves''  not  only  will  some  of  the  Major 
Thirds  be  false,  but  some  of  the  other  intervals  will  differ  from 

what  they  are  in  the  better  keys :  for  example,  j  S  ̂^  ̂  *^^®  Fifth 
less  a  quarter  of  a  comma,  therefore  if  GJf  be  retained  in  preference 

to  Ab,  the  Fifth  j  ^'  will  no  longer  be  equal  to  this  amount. 
Some  old  instruments,  tuned  in  Mean-Tone  Temperament  were 

furnished  with  additional  tones,  such  as  G^,  DJf  and  Db,  thus 
extending  the  number  of  keys  that  could  bo  employed.  The 
English  Concertina,  an  instrument  which  is  generally  tuned  on  the 
Mean  Tone  system,  is  furnished  with  GJf  and  D^  as  well  as  Ab  and 
E>. 

Equal  Temperament. 

In  this  system  of  tuning,  which  is  the  one  now  universally 
adopted  for  key-board  instruments,  the  Octave  is  supposed  to  be 
divided  into  twelve  exactly  equal  intervals,  each  of  which  is  termed 
an  equally  tempered  semitone.  In  consequence,  however,  of  the 
extreme  difficulty  of  thus  timing  an  instrument,  these  intervals  are 
never  exactly  equal,  and  often  very  far  from  being  so. 

The  vibration  ratio  of  the  equally  tempered  semitone  is  evidently 
12 

:       
  ̂ ' 

for  twelve  of  these  intervals  added  together  form  an  Octave,  that  is, 

•twelve  of  their  vibration  ratios  multiplied  together  must  amount  to 



TEMPERAMENT,  239 

*.  In  order  to  compare  the  other  equally  tempered  intervals,  with 
the  corresponding  true  ones,  we  must  go  a  little  deeper  into  the 
subject. 

Starting  from  any  given  tone,  say  C,  let  the  other  twelve  letters 
in  line  I  below,  represent  twelve  other  tones,  obtained  from  it,  by 
successively  ascending  twelve  true  Fifths ;  and  let  the  letters  after 
C  in  line  II  denote  seven  other  tones  derived  from  the  same  tone  C 

by  ascending  seven  Octaves  : 
3        3         333        3        33333         3 

2        2         2        2         2^222222 

I.     C     G    D     A    E     B    Ftf  CJf  Gi(  dJ^  Eft  BJf 

II.     CCCCCCCC 

2 2 2 2 2 2 2 
T 1 1 T T T T 

Inasmuch  as  the  interval  between  any  two  successive  tones  in  I  is 
a  just  Fifth,  the  vibration  ratio  of  which  is  f ,  it  is  obvious  that  the 
vibration  ratio  of  the  interval  between  the  extreme  tones  of  this 

line  is  f  multiplied  by  itself  twelve  times 
12 

=  (f) 

Similarly  
the  vibration  

ratio  of  the  inteiTal  
between  

the  extreme tones  of  line  II 

Consequently  the  vibration  ratio  of  the  interval  between  the  Bft  on 
the  extreme  right  of  line  I  and  the  C  on  the  extreme  right  of  II 

12  7 

=  (I)  -  (!) 
12  7 

=  (I)  X  (J) 

_     531441 ~     524288- 

This  interval  is  called  the  Comma  of  Pythagoras,  which  may  there- 
fore be  defined  as  the  difference  between  twelve  true  Fifths  and 

seven  Octaves.  This  cumbrous  vibration  ratio  cannot  be  expressed 
in  any  simpler  way  with  perfect  exactness,  but  it  very  nearly  equals 

74 

73- 
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This  fraction  may  be  uted  instead  of  the  one  above,  for  all  practical 
purposes,  and  we  shall  so  employ  it  here.  Roughly  speaking,  the 
comma  of  Pythagoras  is  about  3-  of  a  semitone,  or  J  f  of  the  comma 
of  Didymus  which  has  been  often  referred  to  above,  and  the 
vibration  latio  of  which  is  |^. 

We  have  just  seen  that  the  BJ  in  line  I  above  is  sharper  than  the 
C  in  line  II  beneath  it,  by  the  small  interval  termed  the  comma  of 
Pythagoras.  If  therefore  each  of  the  twelve  true  Fifths  in  I  be 

diminished  by  jL  of  this  interval,  that  is  by  -^  of  the  ordinary 
comma  (of  Didymus),  the  BJ  will  coincide  with  the  C.  Thus  the 
tones  of  I  may  be  written 

III.  C    G    D    A    E    B    PJf    Cit    G^    DJf    A#    F    C 

in  which  each  successive  Fifth,  C— G,  G— D,  &c.,  is  a  true  Fifth 
diminished  by  Jj  of  the  ordinary  comma.  Reducing  these  tones  so 
as  to  bring  them  within  the  limit  of  an  Octave  they  may  be 
arranged  in  order  of  pitch  thus : 

IV.  C    Ctf    D    D;f    E    F    F:$    G    GJf    A    AJf    B    C. 

By  observing  the  way  in  which  these  tones  have  been  obtained 

above,  it  will  be  seen,  that  the  successive  intervals  C — C^,  Cj{ — D, 
&c.,  are  all  equal  to  one  another.  For  CJf  (see  III  above)  was 
obtained  from  C,  by  ascending  7  of  the  flat  Fifths  just  referred  to ; 
now  if  we  ascend  6  of  these  same  Fifths  from  C^  we  reach  C,  and 
ascending  two  more  of  these  Fifths  from  C  we  reach  D  ;  therefore 
D  is  obtained  by  ascendmg  7  of  these  flat  Fifths  from  Cjf ; 
consequently  the  interval  C— C|t  must  be  equal  to  the  interval 
Cjf— D,  and  so  on. 

The  tones  represented  in  line  IV  above  are  therefore  the  tones  of 
Equal  Temperament.  Thus  the  Fifths  in  this  Temperament  are  j\ 
of  a  comma,  or  about  the  ̂   part  of  a  Semitone  flatter  than  true 
Fifths ;  and  as  the  Octaves  are  perfect,  the  Fourths  must  be  sharper 
than  true  Fourths  by  the  same  amount. 

The  Major  Third  (C — E  above,  for  example)  was  obtained  by 
ascending  four  true  Fifths  each  flattened  by  j\  of  a  comma  and 
dropping  down  two  Octaves.  Now  the  Major  Third  obtained  by 
ascending  four  true  Fifths  and  descending  two  Octaves,  is,  as  we 
have  already  seen,  sharper  than  a  true  Major  Third,  by  one  comma; 
therefore  the  Major  Third  of  the  Equal  Temperament  is  sharper 
than  a  true  Major  Third,  by  a  comma,  less  four  times  the  amount 
by  which  each  Fifth  is  flattened,  that  is,  less  jV  of  a  comma ;  in 
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other  words,  the  Major  Third  of  Equal  Temperament  is  -^  of  a 
comma  sharper  than  a  true  Major  Third. 

Again,  the  Equal  Tempered  Eifth  is  too  flat  by  j',  of  a  comma, 
and  the  Major  Third  too  sharp  by  /j  of  a  comma ;  therefore  the 
difference  between  them,  that  is,  the  Minor  Third  is  -fj  of  a  comma 
too  flat.  Eurther,  as  the  Octaves  are  perfect,  the  Major  Sixth 
must  be  -f^  of  a  comma  too  sharp,  and  the  Minor  Sixth  -/,-  of  a 
comma  too  flat. 

The  following  Table  gives  in  a  form  convenient  for  reference  the 
amount  by  which  the  Consonant  intervals,  both  in  Mean  Tone  and 
Equal  Temperament,  differ  from  the  corresponding  intervals  in  just 
Intonation. 

IXTERVAL. Mean  Tone. Equal. 

Minor  Thirds ^  comma  flat -^  comma  flat 

Major  Thirds true -h      .'       sharp 

Fourths I  comma  sharp 
tV       ., 

Eifths 
i      „       flat rV      »       flat 

Minor  Sixths true 
t't        "             " 

Major  Sixth ^  comma  sharp -^      , ,       sharp 

Eor  further  purposes  of  comparison,  the  following  table  is  given, 
the  2nd  column  of  which  shows  the  vibration  number  of  the  tones 
of  the  diatonic  scale  on  the  basis  0  =  264;  to  which  is  added  those 
of  the  E!7,  a  Minor  Third  above  C,  the  Aj?,  a  Minor  Sixth  above  C, 
the  B!?,  a  fourth  above  E,  and  the  EJf  and  Cjf,  a  diatonic  Semitone 
below  Gr  and  D  respectively  :  all  in  true  intonation.  The  3rd  and 
4th  columns  give  the  vibration  numbers  of  the  twelve  tones,  into 
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wliich  the  Octave  is  divided  in  Mean-Tone  and  Equal  Temperament 
respectively;  the  numbers  being  calculated  as  far  as  the  first 
decimal  place : 

Tone. Just. Mean  Toxb. 
Equal. 

C 528 
528 528 

B 495 

493-5 
498-4 B^ 

469-3 
472-3 

470-4 A 440 

441-4 

444 

•     A> 

422-4 422-4 
419-1 

G 396 

394-8 
395-5 n 

371-2 368-9 
373-3 F 352 

353-1 
352-4 

E 330 330 

332-6 E> 

316-8 
315-8 

313-9 D 297 

295-2 296-3 Of 
278-4 

275-8 279-7 
' 264 264 264 
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On  comparing  the  Equal  with  the  Mean  Tone  Temperament,  we 
fiee  that  the  former  has  its  Fifth  better  in  tune  than  the  latter,  but 

that  it  is  inferior  in  all  its  other  intervals,  especially  in  the  Major 
Thirds.  On  the  other  hand  it  must  be  recollected  that  in  Mean 

Tone  Temperament,  it  is  only  possible  to  play  in  a  limited  number 
of  keys,  while  in  Equal  Temperament  all  keys  are  equally  good  or 
equally  bad.  If  it  be  desired  therefore  to  play  in  aU  keys,  the 
Equal  Temperament  is  decidedly  the  better ;  in  fact,  the  only  one 
possible  under  these  circumstances. 

As  Equal  Temperament  is  the  one  now  universally  employed  on 
instruments  with  fixed  keys,  it  will  be  of  advantage  to  be  able  to 
compare  its  intervals  with  those  of  just  Intonation,  without  the 
necessity  of  using  the  somewhat  cumbrous  vibration  ratios.  We 
can  do  this  by  employing  a  method  devised  by  Mr.  Ellis.  Suppose 
a  piano  to  be  accurately  tuned  in  Equal  Temperament,  the  Octave 
being  divided  into  twelve  exactly  equal  parts.  Further  suppose 
each  of  these  twelve  equal  semitones  to  be  accurately  divided  into 

100  equal  parts ;  each  of  these  minute  intervals,  Mr.  Ellis  has 
termed  a  Cent,  so  that  there  are  1,200  equal  Cents  in  the  Octave. 

Pig.  90  shows  the  magnitudes  of  the  intervals  in  Equal  and  in 
True  Intonation,  expressed  in  these  Cents. 

The  evils  of  Equal  Temperament  arise  chiefly,  of  course,  from 
the  fact  that  overtones,  which  should  be  coincident,  are  not  so,  but 

produce  audible  beats.  In  addition  to  this,  the  Differentials, 
except  in  the  case  of  the  Octave,  do  not  exactly  correspond  with 
any  tones  of  the  scale,  and  may  generate  beats  with  some  adjacent 
tone,  if  this  latter  be  sounding  at  the  time.  In  the  case  of  the 
Fifths  and  Fourths,  these  beats,  being  very  slow,  do  not  produce 

any  very  bad  effects :  for  example,  with  the  Fifth  from  0  =  264 
we  have  only  one  beat  per  second,  thus : 

792   791 

528 

395-5 

264 

Differential  Tone  =  395-5  —  264  =  131-5         C,  =  132. 
With  the  other  intervals  the  case  is  different,  more  rapid  beats 

being  generated.    The  2nd  column  of  the  following  table  shows  the 
number  of  beats  per  second  produced  between  partials  which  are 



244                     HAND-BOOK  OF  ACOUSTICS. 

Equal. Cents. 
True. 

Semitone 100 

112 Diatonic  Semitone :  1 1 

182 
Smaller  Step  :  j  ̂ 

Tone 200 

204 
Greater  Step :  j  \ 

Minor  Third 
300 
316 Minor  Third 

386 Major  Third 

Major  Third 400 

498 Fourth 

Fourth 500 

590 

Tritone:  \\ 

Tritone 600 

Fifth 700 

702 Fifth 

Minor  Sixth 800 

814 
Minor  Sixth 

884 Major  Sixth 

Major  Sixth 
900 

996 
Minor  Seventh  :j^^ 

Minor  Seventh 1000 

1088 Major  Seventh 

Major  Seventh 
1100 

Octave 1200 Octave 

Fio.  90 
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coincident  in  just  Intonation  wlien  the  interval  given  in  the  1st 
column  is  played  in  Equal  Temperament,  the  lower  tone  of  each 
interval  being  C  =  264. 

Interval. Beats. 

Fifth 1 

Fourth 1-2 

Major  Third 

10-4 Major  Sixth 12 

Minor  Third 

14-5 
Minor  Sixth 

16-5 

The  piano  is  specially  favourable  to  Equal  Temperament;  in  fact, 
this  system  of  tuning  was  first  applied  to  the  piano  and  subsequently 
made  its  way  to  other  key-board  instruments.  In  the  first  place, 
the  tones  of  the  piano  are  loud  only  at  the  moment  of  striking,  and 
die  away  before  the  beats  due  to  the  imperfect  intervals  have  time 
to  become  very  prominent :  and  further,  music  for  the  piano 
abounds  in  rapid  passages,  and  usually,  the  chords  are  so  frequently 
changed,  that  beats  have  very  little  time  in  which  to  make  them- 

selves heard.  Indeed,  Helmholtz  makes  the  suggestion,  that  it  is 
the  unequal  temperament,  which  has  forced  on  the  rapid  rate  of 
modern  music,  not  only  for  the  piano,  but  for  the  organ  also. 
On  the  Harmonium  and  Organ,  the  effects  of  Temperament 

become  very  apparent  in  sustained  chords.  On  the  latter  it  is 
especially  so  m  Mixture  Stops,  the  tempered  Fifths  and  Thirds  of 
which,  dissonating  against  the  pure  Fifths  and  Thirds  in  the  over- 

tones, producing  what  Helmholt25  terms  the  "  awful  din"  so  often 
heard,  when  these  stops  are  drawn. 

Many  attempts  have  been  made  from  time  to  time  to  construct 
Harmoniums,  Organs,  &c.,  in  such  a  way,  and  with  such  a  number 
of  tones  to  the  Octave,  that  the  intervals  they  yield  shall  be  more 
or  less  close  approximations  to  True  Intonation.  The  best  known 
of  these  instruments  are: 

1.  Helmholtz'' 8  Ear monium.   This  instrument  has  two  Manuals, 
the  tones  of   each  being  such  as  would  be  generated  by  a 
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succession  of  True  Fifths,  but  those  of  the  one  manual  are 

tuned  a  comma  sharper  than  those  of  the  other.  A  full 

description  will  be  found  in  Helmholtz's  "  Sensations  of 

Tone." 
2.  Bosanquefs  Harmonium,  which  possesses  eighty-four  tones 

to  the  Octave  and  a  specially  constructed  key-board.  A  full 

account  may  be  found  in  "Proceedings  of  the  Eoyal  Society," 
vol.  23. 

3.  General  Thompson' s  Enharmonic  Organ,  which  possesses  3 
manuals  and  seventy-two  toues  to  the  Octave.  For 
particulars  of  its  construction  the  reader  is  referred  to 

General  Perronet  Thompson's  work  '*  On  the  Principles  and 
Practice  of  Just  Intonation." 

4.  Colin  Brown's  Voice  Harmonium,  the  finger-board  of  which 
differs  entirely  from  the  ordinary  one.  The  principles  of  its 

construction  are  given  in  "  Music  in  Common  Things,"  parts 
I&II. 

Summary. 

To  perform  music  with  true  Intonation  in  one  key  only,  without 
using  Chromatics  and  in  the  Major  Mode,  eight  tones  to  the  Octave 
are  required. 

In  general,  every  transition  of  one  remove,  either  way,  from  the 

original  key  and  still  keeping  to  the  Major  Mode  only,  requires  two 
new  tones.  In  changes  of  three  or  more  removes,  the  number  of 
new  tones  required  is  not  quite  so  large  as  if  the  changes  were 

made  through  the  intervening  keys. 

To  modulate  therefore  in  all  keys  and  in  both  the  Major  and 
Minor  Mode  in  true  intonation  requires  a  very  large  number  of  tones 

to  the  Octave — between  70  and  80,  in  fact. 

This  presents  no  difficulty  in  the  case  of  the  voice  and  stringed 
instruments  of  the  Violin  Class,  f  >r  such  instruments  can  produce 

tones  of  any  required  gradation  of  pitch  ;  the  difficulty  is  only  felt 
in  instruments  with  a  limited  number  of  fixed  tones  ;  and  for  such 

instruments  some  system  of  Temperament  is  necessary. 

A  Temperament  is  any  system  of  tuning  other  than  true  intonation ; 
Intervals  tuned  on  any  such  system  are  termed  tempered  intervals. 
The  object  of  temperament  is  so  to  tune  a  certain  limited  number  of 



TEMPERAMENT.  247 

fixed  tones,  as  to  produce,  07i  the  whole,  the  least  possible  departure 
from,  true  intonation. 

The  limited  number  of  fixed  tones  just  referred  to  is  almost 
always  twelve  to  the  Octave. 

The  systems  of  Temperament,  which  have  been  most  extensively 

used  in  Modern  Music  are  Equal  'Temperament  and  Mean  Tone 
Temperament. 

Mean  Tone  Temperament. 
Chief  features: 

(1)  The  Major  Thirds  are  true. 

(2)  The  Fifths  are  i  comma  flat. 
(3)  There  is  no  distinction  between  the  Greater  and  Smaller 

Tone. 

When  there  are  but  12  tones  to  the  Octave,  however,  (1)  and  (2)  are 
true  in  only  half-a-dozen  keys. 

The  great  disadvantage  of  this  temperament  is,  that  only  music 
in  a  limited  number  of  keys  can  be  performed  on  instruments  tuned 
according  to  this  system. 

Equal  Temperament. 
Chief  features : 

(1)  The  Octave  is  divided  into  12  equal  intervals,  the  vibration 1  2 

ratio  of  each  of  which  is   /«  =  1"0595  or  1*06  nearly 
(2)  The  Fifths  are  Jy  comma,  flat. 
(3)  The  Major  Thirds  are  /y  comma  sharp. 

The  above  facts  are  true  in  all  keys. 

The  chief  advantage  of  this  temperament  is,  that  music  in  all 
keys  can  be  performed  on  instruments  tuned  according  to  this 
system  ;  that  is  to  say,  all  keys  are  equally  good  or  equally  bad. 

Though  it  is  impossible  to  obtain  true  intonation  from  instruments 
with  but  twelve  fixed  tones  to  the  Octave,  yet  in  the  case  of  the 
Voice,  Violin,  and  other  instruments  which  may  be  made  to  produce 
tones  of  any  desired  pitch,  it  seems  seK-evident  that  true  intonation 
should  be  the  thing  aimed  at ;  inasmuch  as  it  is  just  as  easy  with 
these  instruments  to  make  the  intervals  true  as  to  make  them  false, 
provided  the  ear  of  the  performer  has  not  been  already  vitiated  by 
the  tempered  intervals. 
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QUESTIONS. 

CHAPTER  I. 

1.  What  is  meant  by  a  periodic  motion? 
2.  Describe  three  methods  of  obtaining  a  periodic  movement. 
3.  What  is  the  physical  difference  between  musical  sounds  and  noises? 
4.  How  can  it  be  demonstrated,  that  the  air  in  a  sounding  flue-pipa  is  in 

periodic  motion  ? 
5.  Under  what  circumstances  does  a  periodic  motion  not  give  rise  to  a 

musical  sound  ? 

CHAPTER  n. 

6.  How  can  it  be  proved,  that  some  medium  is  necessary  for  the 
transmission  of  sound  ? 

7.  Draw  a  diagram  of  a  water  wave,  showing  clearly  what  is  meant  by 
its  length,  amplitude,  and/orw. 

8.  Draw  three  water  waves  of  same  length  and  amplitude,  but  of  different 
forms;  three  of  same  amplitude  and  form,  but  of  difierent  lengths;  and 
three  of  same  length  and  form  but  of  different  amplitudes. 

9.  Describe  the  way  in  which  a  vibrating  tuning-fork  originates  a  sound 
wave. 

10.  In  what  direction  do  the  air  particles  in  a  sound  wave  vibrate  ? 
11.  What  is  meant  by  the  length,  amplitude,  axidi  form  of  a  sound  wave? 
12.  State  the  connection,  in  a  sound  wave,  between  (1)  length  of  wave 

and  duration  of  particle  vibration,  (2)  amplitude  of  wave  and  extent  of 
particle  vibration,  (3)  form  of  wave  and  manner  of  particle  vibration. 

13.  Describe  the  way  in  which  a  sound  wave  transmits  itself  through  the 
air. 

14.  What  is  an  associated  wave  ? 

15.  Describe  any  method,  by  which  the  velocity  of  sound  in  air  can  be 
determined. 

16.  How  is  the  velocity  of  sound  in  air  aflfected  by  temperature  ? 
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17.  What  is  the  velocity  of  sound  in  air  at  0°  C.  ?  What  is  it  at  20°  C. "? 
What  at  60°  Fah.  ? 

18.  What  is  the  velocity  of  sound  in  water?  How  lias  it  been  deter- 
mined ? 

19.  State  what  you  know  of  the  velocity  of  sound  in  solids. 
20.  Describe  an  experiment,  which  illustrates  the  fact,  that  solids  are,  as 

a  rule,  good  conductors  of  sound. 
21.  A  person  observes  that  ten  seconds  elapse  between  a  flash  of  lightning 

and  the  succeeding  thunder  clap.  What  is  the  approximate  distance  of  the 
thunder  cloud  from  the  observer  ? 

22.  A  vessel  at  sea  is  seen  to  fire  one  of  its  guns.  Thirty-five  seconds 
afterwards,  the  report  is  heard.  How  far  off  is  the  vessel  ?  (Temperature 
25°  C.) 

CHAPTER  HI. 

23.  What  is  the  use  of  the  External  ear  ? 

24.  Describe  the  relative  positions  in  the  ear  of  the  (1)  Tympanum,  (2; 
Fenestra  Ovalis,  (3)  Fenestra  Rotunda. 

25.  How  is  the  vibratory  motion  of  the  Tympanum  transmitted  to  the 
Fenestra  Ovalis  ? 

26.  In  what  part  of  the  internal  ear  are  the  Fibres  of  Corti  situated? 
What  is  supposed  to  be  their  function  ? 

27.  What  is  the  Eustachian  Tube?  What  would  be  the  result  of  this 

tube  becoming  stopped  up  ? 
28.  The  cavity  of  the  Middle  Ear  is  in  most  persons,  completely  separated 

from  the  external  air  by  the  Tympanum;  but  occasionally  there  is  an 
aperture  in  this  latter.  Does  this  necessarily  affect  the  hearing?  Give 
reasons  for  your  answer. 

29.  What  is  the  special  function  of  the  labyrinth  ? 

CHAPTER    IV. 

30.  What  are  the  three  elements  which  define  a  musical  sound  ? 

31.  What  is  the  physical  cause  of  variation  in  pitch?    Describe  a  simple 

experiment  in  support  of  your  answer. 
32.  What  is  meant  by  the  vibration  number  of  a  musical  sound? 

33.  Mention  three  of  the  most  acciu-ate  methods  of   experimentally 
determining  the  vibration  number  of  a  given  musical  sound. 

34.  Describe  the  Wheel  Syren. 

35.  What  are  the  disadvantages  of  Cargnard  de  la  Tour's  Syren  ? 
36.  Describe  the  construction  of  Savart's  Toothed  Wheel. 
37.  Describe  tlie  Sonometer  or  Monochord. 

88.  Describe  Helmholtz's  or  Dove's  Double  Syren. 
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39.  Describe  tlie  principle  of  the  Graphic  method  of  ascertaining  the 
vibration  number  of  a  tuning-fork. 

40.  Given  the  vibration  number  of  a  musical  sound,  how  can  its  wave 
length  be  determined?  What  are  the  lengths  of  tlie  sound  waves  emitted 
by  4  forks,  which  vibrate  128,  256,  512,  and  1024  times  per  second^ 
respectively?    (Take  velocity  of  sound  as  1100). 

41.  The  vibration  number  of  a  tuning-fork  is  532.  What  will  be  the 

length  of  the  sound  wave  it  originates  (1)  in  air  at  32°  Fah.,  (2)  in  air  at 
60°  Fah.  ? 

42.  If  the  length  of  a  sound  wave  is  3  feet  6  inches  when  the  velocity  of 
sound  is  1100  feet  per  second,  what  is  the  vibration  number  of  the  sound  ? 

43.  Calculate  the  length  of  the  sound  wave  emitted  by  an  organ  pipe, 
which  produces  €3  =  32 

44.  Calculate  the  length  of  the  sound  wave  produced  by  a  piccolo  flute, 
which  is  sounding  C*  =  4096. 

45.  What  are  the  approximate  vibration  numbers  of  the  highest  and 
lowest  sounds  used  in  music  ? 

46.  Give  the  vibration  numbers  of  (1)  the  C  in  Handel's  time,  (2)  the 
French  Diapason  normal,  (3)  a  Concert  Piano,  and  organ  (approximately). 

47.  When  a  locomotive  sounding  its  whistle  is  passing  rapidly  through  a 
station,  to  a  person  on  the  platform,  the  pitch  of  the  whistle  appears  sharper 
while  the  engine  is  approaching,  than  it  does  after  it  has  passed  him.  Explain 
this. 

CHAPTER  V. 

48.  What  is  meant  by  the  vibration  ratio  of  an  interval  ?  If  the  vibration 
nnnjbers  of  two  sounds  are  496  and  465  respectively,  what  is  the  vibration 
ratio  of  the  interval  between  them  ?    What  is  this  interval  called  ? 

49.  What  ai'e  the  vibration  ratios  of  an  Octave,  a  Fifth,  and  a  Majoi 
Third? 

50.  What  are  the  vibration  ratios  of  a  Major  and  Minor  Sixth,  and  a 
Minor  Third  ? 

51.  What  is  the  best  way  of  experimentally  proving  that  the  vibration 

ratios  of  an  Octave,  Fifth  and  Major  Tliird  are  exaiclly  .»,  a,  and  a  respec- 
tively ? 

52.  Given  that  the  vibration  numbers  of  s,  m,  d,  are  as  6  :  5  :  4,  and 
that  d  =  300 ;  calculate  from  these  data,  the  vibration  numbers  of  the 
other  tones  of  the  Diatonic  Scale. 

63.  Given  d  =  320,  and  that  the  vibration  numbers  of  the  tones  of  a 
Major  Triad,  in  its  normal  position,  are  as  6  :  5  :  4;  calculate  from  these 
data  the  vibration  numbers  of  the  other  tones  of  the  diatonic  scale. 

54.  Given  d  =  256,  and  vibration  ratios  of  a  Fifth  and  Major  Third  are 

|.  and  i.  respectively;  calculate /»oto  these  data,  the  vibration  numbers  of  the 
other  tones  of  the  diatonic  scale. 
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65.  Given  d  =  240,  r  ==  270,  m  =  300,  f  =  320,  s  =  360.  1  =  400, 

t  =  450,  d'  =  480  ;  calculate  from  these  data  the  vibration  ratios  of  a 
Diminished  Fifth,  the  Greater  Step,  tlie  Smaller  Step,  and  the  Diatonic 
Semitone. 

66.  With  the  data  of  question  56,  calculate  the  vibration  numbers  of  fe 

and  se,  and  the  vibration  ratios  of  the  Greater  Chromatic  j^,  and  the 

Lesser  Chromatic  |  ̂. 

67.  From  the  data  of  question  55,  show  that  the  interval   |  ^  is  not  a 

perfect  Fifth ;  and  calculate  the  vibration  number  of  the  note  r,  which 
would  form  a  perfect  Fifth  to  1. 

58.  By  means  of  the  results  of  question  57,  ascertain  the  vibration  ratio 
of  the  interval  from  ray  to  rah.    What  is  this  interval  called  ? 

59.  Show  from  the  numbers  given  in  question  55,  that  |  ^  is  not  a  perfect 

Minor  Third,  but  that  { "^J  is  so. 
60.  What  musical  peculiarity  does  the  Octave  possess,  which  is  shared  by 

no  smaller  interval  ? 

61.  Given:  { |  =  f  and  {  ^g®  =  ||  5  calculate  ratio  of  j  Y- 

62.  Given :     ̂   ̂   4  and    j  s^®  =  |^  ;  calculate  vibration  ratio  of  | »®. 

63.  Given :  I  ta  ̂   lit  ̂"^  I  le  ""  rl '  ̂^^l^^^^*®  vibration  ratio  of  the 
interval  between  ta  and  le. 

64.  Given :  |  ̂®  =  1  and  I  ̂*  =  ̂  ;  calculate  vibration  ratio  of  the 
interval  between  fe  and  ba. 

63._ Given:  U  =  ?,  |»  =  ¥•  U  =  tI-  i?  =  I  ̂"^  II? 
=  ̂   ;  calculate  vibration  ratio  of  the  interval  j  ̂. 

66.  Given :  J  <i'  =  i|,  j  J  =  f .  {  se  "=  ll '  calculate  vibration  ratio 
of  the  interval   j  ^q. 

67.  Given:    !  g'  =  f  »"d    |  ^s    =   H '   ̂ ^^^^^^^-^   vibration  ratio  of 

Ua- 
68.  From  the  data  of  No.  56,  calculate  the  vibration  ratios  of  a  Major 

Tenth,  a  Minor  Tenth,  and  a  Twelfth. 

69.  How  is  the  vibration  ratio  of  the  sum  of  two  intervals  calculated, 
when  the  vibration  ratios  of  these  latter  are  known  ?    Give  an  example. 

70.  Given  the  vibration  ratios  of  two  intervals,  show  how  the  vibration 
ratio  of  the  difference  between  these  intervals  can  be  ascertained.  Give  an 

example. 
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CHAPTER  Vl. 

71.  What  is  meant  by  the  intensity  of  a  musical  sound  ?  How  can  it  be 

shown  experimentally,  that  tlie  intensity  of  a  sound  depends  upon  the 
amplitude  of  the  vibrations  that  give  rise  to  it  ? 

72.  State  the  law  of  Inverse  squares.  Why  does  it  not  appear  to  be 
correct,  under  ordinar}'  circumstances  ? 

73.  What  is  the  principle  of  the  speaking  tube  ? 
74.  Explain  the  phenomenon  of  echoes. 
75.  If  two  seconds  elapse  between  a  sound  and  its  echo,  what  is  the 

distance  of  the  reflecting  surface  ? 

76.  Explain  one  of  the  causes  of  the  bad  acoustical  properties  of  some 
buildings,  and  state  diny  remedy  you  know  of. 

77.  Why  does  one's  voice  appear  louder  in  an  empty  unfurnished  room, 
than  in  the  same  room  furnished  ? 

78.  Give  a  theoretical  proof  of  the  law  of  Inverse  Squares. 

CHAPTER  VII. 

79.  How  can  the  phenomenon  of  resonance  or  co- vibration  be  illustrated 
with  two  tuning-forks?  What  conditions  are  necessary  to  the  success  of  the 
experiment? 

80.  Describe  some  experiments  with  stretched  strings  to  illustrate  the 
phenomenon  of  resonance. 

81.  Explain  in  detail  the  cause  of  resonance  or  co- vibration  in  tlie  case  of 
tuning-forks  or  stretched  strings. 

82.  Explain  in  detail  the  cause  of  resonance  in  open  tubes,  showing 
clearly  why  the  tube  must  be  of  a  certain  definite  length,  if  it  is  to  resound 
to  a  note  of  given  pitch. 

83.  Explain  in  detail  tlie  cause  of  resonance  in  stopped  tubes,  showing 
clearly  why  the  tube  must  be  of  a  certain  definite  length,  if  it  is  to  resound 
to  a  note  of  given  pitch. 

84.  How  would  you  construct  a  resonator  to  resound  to  G'  ?  Calculate 
approximate  dimensions. 

85.  To  illustrate  the  phenomenon  of  resonance  with  two  tuning-forks, 
they  must  be  in  the  most  perfect  unison  ;  whereas  an  approximate  unison  is 
sufficient  in  the  case  of  two  strings  stretched  on  the  same  sound-board. 
Explain  this. 

8G.  I  have  a  tube  1  inch  in  diameter,  open  at  both  ends,  which  resounds 

powerfully  to  GJf.     What  length  is  it  ?     (C  =  512). 
87.  Calculate  the  length  of  a  stopped  tube  about  1  inch  in  diameter, 

resounding  to  Ej^. 

88.  A  tube  open  at  both  ends,  and  about  an  inch  in  diameter,  is  lOJ 
inches  long.     Calculate  approximately  the  note  it  resounds  to. 



QUESTIONS.  253 

89.  A  tube  closed  at  one  end  is  14  inches  long,  and  about  IJ  inches 
diameter.     Calculate  approximately  the  note  to  which  it  resounds. 

90.  What  are  resonance  boxes?  What  are  they  used  for?  What  are 
resonators  ?  What  are  they  used  for  ?  Explain  the  best  method  of  using 
them. 

91.  Describe  an  experiment  to  show  how  the  resonance  of  air-chambers 
can  be  optically  demonstrated. 

92.  Why  does  the  sound  of  a  vibrating  tuning-fork  die  away  more  quickly 
when  attached  to  a  resonance  box,  than  when  held  in  the  hand  ? 

93.  While  singing  the  other  day,  I  happened  to  sound  D  loudly. 
Immediately  a  gas  globe  in  the  room  was  lieard  to  give  out  a  tone  of  the 
same  pitch.  I  found  that  this  occurred  whenever  D  was  sounded  in  its 
vicinity,  but  a  tone  of  any  other  pitch  produced  no  effect.  Explain  why 
the  globe  emitted  this  particular  note  and  no  other. 

94.  Why  does  a  vibrating  tuning  fork  give  forth  a  louder  sound,  when 
its  handle  is  applied  to  a  table,  than  when  merely  held  in  the  hand  ? 

CHAPTER  VIII. 

95.  Define  the  terms :  Simple  Tone,  Clang  or  Compound  Tone,  Partial, 
Overtone,  Fundamental  Tone. 

96.  Write  down  in  vertical  columns  the  Partials,  that  may  be  heard  when 
any  low  note  is  loudly  sounded  on  the  pianoforte  or  harmonium,  or  by  a  bass 
voice,  calling  the  fundamental,  d,,  r,,  m,,  f,,  s,,  1,,  t,,  successively. 

97.  Write  down  the  vibration  numbers  of  the  partials  which  may  be 
heard  on  a  harmonium,  calling  the  fundamental  100. 

98.  Write  down  in  vertical  columns,  the  partials  that  may  be  heard,  when 

the  following  tones  are  struck  on  a  piano  : — Cjtj,  Dj,  Eg,  Fg'  ̂fc'  ̂*^2' 
/C 

A  . 99.  The  chord     ̂   is  sounded  on  a  harmonium,  or  smartly  struck  on  a 
\F, 

a  piano.     Write  down  in  4  columns  the  various  partial  tones  that  may  be 
heard,  keeping  sounds  of  the  same  pitch  on  the  same  horizontal  line. 

100.  From  what  instruments  can  simple  tones  be  obtained  ? 
101.  Write  down  in  a  column  the  relative  vibration  numbers  of  the  first 

20  partial  tones,  naming  all  those  which  are  constituent  tones  of  the  musical 
scale. 

102.  Many  persons  find  great  difficulty  in  hearing  overtones.  Explain 
s^ny  methods  you  know  of,  which  will  assist  such  persons  in  hearing  them. 

103.  State  what  you  know  concerning  the  relative  intensities  of  partials 
on  various  instruments. 

104.  Upon  what  does  the  quality  of  a  Compound  Tone  depend  ?  Explain 
fully  the  meaning  of  your  answer. 
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105.  Explain  how  a  Tuning  Fork  can  be  kept  in  a  state  of  continued 
vibration  by  an  electro-magnet. 

106.  Describe  the  apparatus,  which  is  used  for  the  purpose  of  keeping  a 
number  of  forks  in  continued  vibration,  by  means  of  electro-magnets  and  a 

single  current.  What  relation  must  exist  between  the  vibi-ation  numbert 
of  these  forks  ? 

107.  How  may  the  relative  intensities  of  the  sounds  of  the  forks  in  the 
above,  be  modified  ? 

108.  Describe  the  apparatus  used  by  Ilelmholtz,  in  his  experiments  on 
the  synthesis  of  Compound  Tones. 

109.  Wliat  is  a  pendular  vibration  ?  Describe  a  method  of  obtaining  a 
graphic  representation  of  one. 

110.  Show  by  a  diagram  how  to  compound  two  simple  associated  waves. 

111.  Given  the  quality  of  a  musical  tone  :  is  it  possible  to  deteruiine  thii 
corresponding  wave  form  ?    If  not,  why  not  ? 

CHAPTER  IX. 

112.  Describe  an  experiment  illustrating  the  use  of  the  sound-board  in 
stringed  instruments. 

113.  What  acts  as  the  sound-board  in  the  harp,  and  in  the  violin  ? 
114.  State  the  laws  of  stretched  strings,  relating  to  Pitch  ;  and  illustrate 

them  by  reference  to  musical  instruments. 

115.  Give  the  experimental  proofs  of  the  above. 

116.  Take  a  stretched  string  and  set  it  vibrating  as  a  whole.  Stop  it 
at  lialf  its  length  and  set  one  of  the  halves  vibrating.  Do  the  same  with 

\-  —y  —y  —i  —  a"d  —y  of  its  length.  What  notes  wiU  be  heard  in  each  case, 

calling  tlie  first  one  d|  ?     What  will  be  the  relative  rates  of  vibration  P 

117.  Define  the  terms  node,  and  ventral  segment. 

118.  Describe  an  experiment  to  show  that  a  stretched  string  can  vibrate  in 
«everal  segments :  say,  four. 

119.  Explain  the  cause  of  the  occurrence  of  partials  in  the  tones  which 
are  given  by  stretched  strings. 

120.  How  can  it  be  proved  that  any  particular  partial — say,  the  6th — is 
produced  by  the  string  vibrating  in  6  segments  with  4  nodes  ? 

121.  How  could  you  ensure  the  absence  of  the  7th  partial  in  the  tone 
produced  by  a  violin  string  ? 

122.  How  is  the  quality  of  tone  from  a  stringed  instrument  aflFected  by 
tiie  weight  and  flexibility  of  the  string  ? 

123.  How  could  you  ensure  the  absence  of  any  given  partial  in  the  tone 
irom  a  stretched  ptring  ? 
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124.  What  is  tlie  best  niethod  of  proceeding,  if  we  wish  to  ensure  the 
presence  of  a  particular  partial  in  the  tone  from  a  stretclied  string  ? 

125.  Explain  clearly  how  nodes  are  formed  in  a  stretched  string.     Give 
an  experiment  in  illustration. 

126.  What  are  the  principal  circumstances,  whicli  determine  the  presence 
and  relative  intensities  of  partials,  in  the  tones  of  stringed  instruments  ? 

127.  Explain  fully  the  effect  of  pressing  down  the  loud  pedal  in  pianoforte 
playing. 

128.  I  press  down  the  loud  pedal  of  a  pianoforte  and  strike  E|^  in  the 
Bass  Clef  sharply ;  name  the  strings  that  will  be  set  in  vibration. 

129.  How  can  a  Tuning  Fork  be  used,  to  produce  vibrations  in  a  stretched 
string  ? 

130.  Explain  how  the  material  of  the  hammer  and  the  kind  of  blow, 
affect  the  quality  of  tone  in  the  pianoforte  ? 

CHAPTER  X. 

131.  Describe  the  phenomenon  of  the  reflection  of  a  sound  wave  at  the 
end  of  an  open  pipe. 

132.  Describe  the  phenomenon  of  the  reflection  of  sound  at  the  end  ol  a 

stopped  pipe. 
133.  Define  the  terms  node  and  ventral  segment  as  applied  to  organ  pipes. 

134.  Explain  clearly  how  a  node  is  formed  in  an  open  organ  pipe. 

135.  Explain  how  nodes  are  formed  in  a  stopped  organ  pipe. 

136.  Show  by  diagrams  the  positions  that  the  nodes  may  take  in  an  open 
organ  pipe,  and  state  the  pitch  of  the  tone  produced  in  each  case  relatively 
to  the  fundamental  tone  of  the  pipe. 

137.  Do  the  same  with  regard  to  a  stopped  organ  pipe, 

138.  Explain  why  only  the  odd  series  of  pai'tial  tones  occurs  in  the  tones 
from  stopped  organ  pipes,  while  open  pipes  give  the  complete  series. 

139.  What  is  the  difference  between  Harmonics  on  the  one  hand,  and 
Overtones  or  Partials  on  the  other? 

140.  Explain  the  principle  of  mixture  stops  on  the  organ — the 

"  Sesquialtera  "  for  example. 
141.  Describe  an  experimental  method  of  proving  the  existence  of  nodes 

in  an  organ  pipe. 

142.  I  have  two  organ  pipes  each  4ft.  4in.  long,  one  stopped  and 
the  other  open.  Calculate  the  approximate  pitch  of  the  fundamental  tone 
in  each. 

143.  What  will  be  the  pitch  (approximate)  of  an  open  organ  pipe 
6ft.  6in.  long  ?    What  would  be  the  approximate  pitch  if  it  were  stopped  ? 
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144.  To  what  length  (approximate)  muct  an  open  organ  pipe  be  cut 

to  produce  the  F'  on  the  top  of  the  Treble  staft'?  To  wliat  length,  if 
stopped  ? 

145.  What  is  the  general  effect  of  rise  of  temperature  upon  organ  pipes, 
and  why  has  it  this  effect  ? 

146.  I  have  two  organ  pipes,  one  of  metal  and  the  other  of  wood.  They 

are  exactly  in  unison  on  a  cold  day  in  winter,  while  on  a  hot  summer's  day 
they  are  out  of  tune  with  one  another.  Explain  the  reason  of  this.  Which 
will  be  the  sharper  of  the  two  in  warm  weather  ? 

147.  How  is  the  pitch  of  a  pipe  affected  by  the  wind  pressure  ? 

148.  Detail  the  various  circumstances  that  affect  the  pitch  of  an  organ 

pipe. 149.  Why  cannot  the  intensity  of  the  sound  from  an  organ  pipe  bo 
increased  by  augmenting  the  wind  pressure  ? 

150.  Describe  the  two  kinds  of  reed  used  in  musical  instruments,  and 
explain  their  action. 

151.  Explain  why  the  tones  of  a  hannonium  are  so  rich  in  partials. 
163.  What  is  the  function  of  the  pipe  in  an  organ  reed-pipe  ? 
153.  How  are  reeds  sharpened  and  flattened  ? 

154.  What  is  the  effect  of  a  rise  of  temp'jrature  on  the  pitch  of  a  reed  ? 
155.  What  is  the  cause  of  the  peculiar  quality  of  the  tones  of  tlie 

Clarionet  P 

156.  Describe  the  principle  of  the  French  Horn,  showing  the  origin  of  its 
Tones,  and  how  variation  in  pitch  is  effected. 

157.  To  what  class  of  instruments  would  you  assign  the  Human  Voice, 
and  why  ? 

158.  What  circumstances  affect  the  production  of  partials,  and  therefore 
the  quality  of  the  tones  of  the  Human  Voice  ? 

159.  I  sing  successively  the  vocal  sounds  "  a"  and  "oo ;"  state  briefly  the 
changes  that  take  place  in  the  shape  and  size  of  the  mouth,  in  passing  from 
the  former  to  the  latter ;  and  show  liow  these  changes  cause  the  difference 
in  the  above  sounds. 

160.  By  increasing  the  wind  pressure  in  blowing  the  Flute,  the  tone  rises 
an  octave ;  in  the  Clarionet,  it  rises  a  Twelfth.    Explain  this  discrepancy. 

CHAPTER  XI. 

161.  State  the  laws  connecting  the  vibration  number  with  the  length  of 

a  rod,  vibrating  longitudinally — 
1st.  When  the  rod  is  fixed  at  both  ends. 

2nd.  When  it  is  fixed  at  one  end  only. 
3rd.  When  it  is  free  at  both  ends. 

1616.  What  partials  may  occur  in  each  of  the  above  cases? 
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162.  State  the  laws  connecting  the  vibration  number  with  the  length  of  a 

rod,  vibrating  transversely — 
1st.  When  the  rod  is  fixed  at  both  ends. 

2nd.  When  it  is  fixed  at  one  end  only. 
3rd.  When  it  is  free  at  both  ends. 

163.  What  partials  may  occur  in  each  of  the  above  cases  ? 
164.  State  what  you  know  of  the  partials  which  may  be  produced  by  a 

tuning  fork. 
165.  Give  sketches  showing  the  various  ways  in  which  a  tuning  fork  may 

vibrate. 

166.  When  the  handle  of  a  tuning  fork  is  applied  to  a  table,  the  fork's 
vibrations  are  communicated  to  the  latter.  Explain  how  this  is  effected. 
Account  also  for  the  louder  sound  thus  produced. 

167.  How  does  change  of  temperature  affect  the  pitch  of  a  tuning  fork? 

168.  How  can  the  velocity  of  sound  in  au-  be  approximately  ascertained, 
with  no  other  apparatus  than  an  open  organ  pipe  giving  C=518  ? 

169.  Given  the  velocity  of  sound  in  air,  how  can  the  velocity  of  sound  in 
other  gases  be  ascertained  ? 

170.  Explain  the  methods  by  which  the  velocity  of  sound  in  solid  bodies 
is  ascertained. 

171.  A  silver  wire  is  stretched  between  two  fixed  points,  and  caused 
to  vibrate  longitudinally.  Its  length  is  varied  till  the  tone  it  produces  is  in 

unison  with  a  G'  fork  (C'=512).  It  then  measures  8ft.  4in.  Calculate  thti 
velocity  of  sound  in  silver. 

172.  A  copper  rod  2ft.  lOin.  long  is  fixed  in  a  vice  at  one  end  and  rubbed 
longitudinally  with  a  resined  leather.  The  tone  it  emits  is  in  unison  with  a 

C^  tuning  fork  (=1024).     Find  the  velocity  of  sound  in  copper. 
173.  If  a  lath  of  metal  4ft.  long,  fixed  at  one  end,  vibrates  laterally  once 

a  second ;  how  many  vibrations  per  second  will  it  perform,  when  its  length 
is  reduced  to  4in.? 

174.  How  can  the  nodal  lines  of  a  vibrating  plate  or  membrane  be 
discovered  ?    Explain  the  principle  of  the  method. 

176.  Describe  by  means  of  sketches  two  or  three  ways  in  vrhich  a  square 
and  a  round  plate  may  vibrate. 

CHAPTER  XII. 

176.  What  are  Combination  Tones  ?    How  many  kinds  of  Combination 
Tones  are  there  ?     What  are  they  respectively  termed  ? 

177.  How  is  the  vibration  number  of  a  differential  tone  related  to  the 

vibration  numbers  of  its  generators  ? 
178.  Describe  some  method  of  producing  Diflterential  Tones 
179.  Calculate  the  Differentials  produced  by  an  Octave,  Fifth,  and  Major 

and  Minor  Thirds. 
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180.  Calculate  the  Differentials  produced  by  a  Fourth,  Major  and  Minor 
Sixth,  a  Tone,  and  a  Semitone. 

181.  When  the  following  is  played  on  a  Harmonium,  what  Differential 
Tones  may  occur  ? 

(  :s    Id'  :—  It    :1   Is    :— If   :n  Ir   :- Ir    :~  id   :-  |-ll 

hn    |n   :—  |s    :f  |n   :— |r    :d  |d    :— It,  :— |d   :— |— 1| 
182.  Upon  what  instruments  are  Differential  Tones  very  prominent '? 
183.  When  is  tlie  Differential  intermediate  in  pitch  between  its  two 

generators  ? 

184.  What  is  meant  by  a  Differential  Tone  of  the  1st  order?  Show  bj'^ 
an  example  how  Differential  Tones  of  the  2nd  and  3rd  order  are  produced. 

185.  How  is  the  vibration  number  of  a  Summation  Tone  related  to  the 

vibration  numbers  of  its  generators  ? 

CHAPTER  XIII. 

18b.  Explain  by  means  of  diagrams  or  otherwise,  wiiat  is  meant  by 
Interference  of  sound  waves. 

187.  What  is  meant  when  it  is  said  tliat  two  waves  are  in  the  sauie  or 

opposite  phase  ? 
188.  Describe  and  sketch  any  apparatus  that  may  be  used  to  demonstrate 

the  fact,  that  two  sounds  may  be  so  combined  as  to  produce  silence. 
189.  Describe  by  help  of  a  diagram  the  sound  waves  that  emanate  from  a 

vibrating  fork,  clearly  showing  their  alternate  phases. 
190.  If  a  tuning-fork  be  revolved  before  the  ear,  alternations  of  intensity 

are  observed  ;  clearly  explain  the  whole  phenomenon  and  its  cause. 

191.  How  may  Chladni's  plates  be  used  to  illustrate  the  phenomenon  of 
interference  ? 

192.  How  are  the  intensities  of  sounds  related  to  the  amplitudes  of  their 

corresponding  sound-waves  ? 
193.  What  is  a  beat  ?  What  is  the  law  connecting  the  vibration  numbera 

of  two  tones  and  the  number  of  beats  they  generate  per  second  ? 
194.  Carefully  explain  how  a  beat  is  produced. 
195.  How  would  you  proceed  to  prove  experimentally  tliat  the  rapidity 

of  the  beats  increases  as  the  interval  between  the  two  generating  tones 
increases  7 

196.  Explain  the  principle  of  the  Tonometer. 
197.  A  Tonometer  consists  of  60  forks,  each  fork  is  4  vibrations  per  second 

sharper  than  the  preceding,  and  the  extreme  forks  form  an  exact  Octave. 
What  is  the  pitch  of  the  lowest  fork  ? 

198.  Two  harmonium  reeds  when  sounded  together  produce  4  beats  per 

second.  The  pitch  of  one  of  them  is  then  slightly  lowered,  and  on  again 

sounding  it  with  the  other,  two  beats  per  second  are  heard.  It  is  then 
further  flattened  and  again  two  beats  per  second  are  heard.  Was  it  originally 
sharper  or  flatter  than  the  unaltered  one  ?    Answer  fully. 
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199.  What  is  the  use  of  the  Tonometer?  Describe  the  method  of  using 
it. 

200.  Wliy  is  the  Reed  Tonometer  inferior  in  accuracy  to  the  tuning-fork 
Tonometer  ? 

CHAPTER  XIV. 

201.  What  use  is  made  of  slow  beats  in  nmsic  ? 

202.  Wiiat  is  the  physical  cause  of  dissonance  ?  How  would  you  experi- 
mentally prove  your  answer  to  be  correct  ? 

203.  What  is  meant  by  the  Beatmg  Distance  ?  State  generally  how  it 
varies  in  different  parts  of  the  scale, 

204.  How  can  the  phenomenon  of  beats  be  imitated  by  the  use  of  one 
sound  only  ? 

205.  Why  are  beats  unpleasant  to  the  ear? 
206.  Explain  a  method  of  detecting  very  faint  musical  sounds  by  means 

of  beats. 

207.  Why  do  beats  cease  to  be  unpleasant  when  Ihey  are  sufficiently 
rapid  ? 

208.  Upon  what  does  the  harshness  of  a  dissonance  depend.  ?  Illustrate 
by  examples. 

209.  Show  by  examples  that  the  harsliness  of  a  dissonance  does  not 
depend  entirely  on  the  rapidity  of  beats. 

210.  What  are  tlie  Beating  Distances,  in  the  regions  of  Cg,  C,,  C,  C,  and 
Ca? 

211.  "  The  sensation  of  a  musical  tone  in  the  region  of  Gg  =  64  persists 

for  Jw  of  a  second  after  the  vibrations  that  give  rise  to  it  have  ceased." 
What  evidence  is  there  for  this  statement  ? 

212.  What  is  the  cause  of  Dissonance  between  Simple  Tones  that  are 

beyond  Beating  Distance  ? 
213.  Two  forks,  the  vibrational  numbers  of  which  are  100  and  210, 

dissonate  when  sounded  together.  Explain  why.  How  many  beats  per 
second  may  be  counted  ? 

214.  Two  forks,  the  vibration  numbers  of  which  are  200  and  296,  generate 
slow  beats  when  sounded  together.  Explain  the  cause  of  this.  How  many 

beats  per  second  will  be  heard  ? 
215.  Show  that  a  compound  tone  may  contain  dissonant  elements  in 

itself. 

216.  Show  clearly,  how  it  is  that   {  ̂  is  a  harsher  discord  than    j  ^  and 

\i  *•>-  iw 
217.  The  interval  j  '  sounds  less  harsh  when  played  by  two  clarionets, 

than  when  played  on  a  harmonium.     Explain  the  reason. 

218.  Show  by  sketclies  the  beating  elemp.nts  present  in  a  Major  and 

Minor  Third  when  played  on  a  piano. 
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219.  Two  harmonium  reeds,  the  vibration  numbers  of  which  are  199  and 

251,  produce  slow  beats  when  sounded  together.  Explain  the  reason.  How 
many  beats  per  second  will  be  heard  ? 

220.  Two  forks,  the  vibration  numbers  of  which  are  256  and  168,  produce 
faint  beats  when  sounded  together.  How  many  beats  per  second  will  be 
heard? 

221.  How  many  audible  beats  per  second  will  two  harmonium  reeds 
generate,  which  vibrate  149  and  301  times  per  second  respectively  ? 

CHAPTER  XV. 

222.  How  is  the  interval  of  an  Octave  between  Simple  Tones  defined? 

223.  How  would  you  proceed  to  tune  two  Simple  Ibnes  to  the  interval  of 
a  perfect  Fifth  ;  1st,  if  you  had  no  other  tones  to  assist  you,  and  2nd,  if  you 
already  possessed  the  Octavo  of  one  of  the  tones  ? 

224.  How  are  the  intervals  of  a  Fifth  and  Fourth  between  Simple  Tone* 
defined? 

225.  How  are  the  intervals  of  an  Octave  and  a  Fifth  between  Compound 
Tones  defined? 

226.  Explain  the  principle  involved  in  tuning  two  violin  strings  at  the 
interval  of  a  perfect  Fifth. 

227.  In  the  interval  of  a  Fourth,  why  is  it  necessary  that  the  vibration 
numbers  of  the  two  tones  should  be  in  the  exact  ratio  of  4  :  3  ? 

228.  If  two  harmonium  reeds  vibrate  501  and  399  times  per  second 
respectively,  how  many  beats  per  second  will  bo  heard  when  they  are  sounded 

together  ? 

229.  The  vibration  numbers  of  the  C  and  E[j  in  an  equal-tempered 
harmonium  are  264  and  314  respectively;  how  many  beats  per  second  will  be 
heard  when  they  are  sounded  together  ? 

230.  On  an  equal-tempered  harmonium,  C  =  264  and  A  ==  444.  When 
they  are  sounded  together,  how  many  beats  per  second  will  be  heard  ? 

231.  Two  harmonium  vibrators  an  exact  Octave  apart  are  sounded 

together.  Explain  fully  the  result  of  again  sounding  them  together  after 
one  of  them  has  been  flattened  by  one  vibration  per  second. 

232.  How  is  the  Octave  defined,  in  the  case  of  stopped  organ  pipes,  the 
tones  of  which  consist  of  the  1st  and  3rd  partials  only  ? 

233.  Which  is  the  easier  interval  to  tune,  and  why : — the  Fifth  or  Major 
third? 

234  Two  tones  are  sounded  on  a  harmonium,  the  vibration  numbere  of 
whksh  are  300  and  401  respectively.  How  many  beats  per  second  may  be 
counted  ? 
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CHAPTER  XVI. 

235.  What  musical  intervals  are  perfectly  harmonious  under  all  circum- 
stances ?     Why  are  they  so  ? 

286.  Why  does  a  Fifth  sound  rough  when  very  low  in  pitch  ? 

237.  How  is  it  that  singing  in  Octaves  is  usually  styled  singing  in  unison? 

238.  Compare  tlieoretically  the  following  Fifths  as  played  Ist  on  a  har- 

monium, and  2nd  on  a  stopped  diapason : —  -j/-     *    '^j 

239.  Compare  the  relative  smoothness  of  a  Fourth  and  Major  Sixth  under 

similai-  conditions  of  quality  and  pitch. 
240.  Compare  tlie  relative  smoothness  of  Major  and  Minor  Thirds  between 

tones  of  ordinary  quality. 

241.  Why  can  the  Major  Third  be  used  at  a  lower  pitch  than  the  Minor 
Third? 

242.  Account  for  the  inferiority  of  the  Minor  Sixth  to  its  inversion,  thw 

Major  Third. 
243.  Mention  any  facts  that  serve  to  explain  why  Thirds  were  not 

admitted  to  the  rank  of  Consonances  until  comparatively  recent  times. 

244.  Why  do  sucli  intervals  as  Thirds,  Sixths,  &c.,  sound  smoother  on  the 
Stopped  than  on  Open  pipes  ? 

245.  In  a  duet  for  Oboe  and  Clarinet,  the  Fifth  sounds  smoother  when 
tlie  latter  instrument  takes  the  lower  tone,  but  the  Fourtli  is  smoother  when 

the  Oboe  takes  the  lower  tone.     Explain  this. 

246.  Compare  in  smoothness  the  intervals  of  a  Fifth  and  a  Twelfth. 

247.  Compare  the  Thirds  and  Tenths  in  smoothness. 
248.  Show  which  are  the  better,  Thirteenths  or  Sixths. 

249.  Compare  the  Fourth  witli  the  Eleventh. 

250.  Give  general  rules  referring  to  the  relative  smoothness  of  an  interval, 
and  its  increase  by  an  Octave. 

CHAPTER  XVII. 

251.  Name,  and  give  the  vibration  ratios  of  the  Consonant  interval* 
smaller  than  tlie  Octave. 

252.  Combine  the  above,  two  at  a  time  and  calculate  the  vibration  ratios 
of  the  intervals  thus  formed,  which  are  less  than  an  Octave. 

253.  Show  from  the  above,  that  there  are  only  six  consonant  triads  witliin 
the  Octave. 

254.  Name  the  six  coi  sonant  triads,  and  show  how  they  may  be  considered 
«s  derived  from  two. 
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255.  Show  on  pliysical  grounds,  that  the  1st  inversion  of  the  Major  triad 
is  inferior  to  its  other  two  positions. 

256.  Prove  from  acoustical  considerations,  that  the  2nd  inversion  of  a 
Minor  Triad  is  inferior  to  its  other  two  positions. 

257.  Account  for  the  fact  that  .>r_€_  is  more  harmonious  than 

258.  Why  are  Major  Triads  as  a  rule  more  harmonious  than  Minor  Triads '? 
259.  In  selecting  the  most  harmonious  distributions  of  the  Major  Triad, 

what  intervals  should  be  avoided,  and  why  ? 
260.  Give  examples  of  the  more  perfect  and  less  perfect  distributions  of 

the  Major  Triads. 
261.  Wliat  considerations  guide  us  in   selecting  the  more  liarmonious 

distributions  of  the  Minor  Triad  ? 

262.  What  three  distributions  of  the  Minor  Triad  have  only  one  dis- 
turbing differential  ? 

263.  How  are  consonant  Tetrads  formed  from  consonant  Triads  V 

264.  Compare  the  relative  harmoniousness  of  the  following  two  Tetrad* 
fd'  ;  s 

after  the  manner  of  Fig.  87  : —      key  F.  <  '^     and  key  Dji.     }  ̂ 

fd  (n 
265.  What  considerations  serve  as  a  guide  in  selecting  the  best  positions 

and  distributions  of  a  Major  Tetrad?    Give  Helmholtz's  rule. 
266.  Why  may  neither  the  3rd  nor  5th  of  a  Major  Triad  be  duplicated 

by  the  double  Octave  ? 
267.  Give  examples  of  good  positions  and  distributions  of  the  Major 

Tetrad. 

268.  State  any  rule  you  know  of,  concerning  the  distribution  of  the  Ist 
inversion  of  the  Major  Tetrad. 

269.  Within  what  limits  should  the  2nd  inversion  of  a  Major  Tetrad  lie? 
270.  Write   down   a   Minor    Tetrad   which    has    only  one   disturbing 

differential. 

271.  State  any  rule  you  know  of,  concerning  the  distribution  of  the  2nd 
diversion  of  the  Minor  Tetrad. 

272.  Within  what  limits  should  the  1st  inversion  of  a  Minor  Tetrad  lie? 

CHAPTER    XVIII. 

273.  Given  that  the  vibration  ratios  of  the  tones  of  a  Major  Triad  are  as 

8:5:4.  show  that   |  ̂  is  not  a  perfect  Fifth. 

274.  Witli  the  data  of  the  last  question  show  that  |  '  is  not  a  true  Minor 
Third. 

275.  Calculate,  from  the  data  of  273,  the  vibration  ratio  of  |  v^ . 
276.  When  is  rah  required,  (I)  in  hai-mony  (2)  in  melody  P 

277.  What  are  tlie  vibration  ratios  of  j  vj^  and   j    |? 
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278.  How  many  new  tones  are  required  to  form  the  Major  Diatonic  Soale 
of  the  new  Key,  when  a  transition  of  one  remove  to  the  riglit  occurs  ? 
What  are  they  ?    Show  that  your  answer  is  eorrect. 

279.  When  a  transition  of  one  remove  to  the  left  occm-s  in  a  piece  of 
music,  show  that  two  new  tones  will  be  requii-ed  to  form  tlie  Major  Diatonic 
Scale  of  the  new  key. 

280.  Show  what  new  tones  will  be  required  to  form  the  Major  Diatonic 
Scale,  when  a  piece  of  nmsic  changes  suddenly  from  C  to  K. 

281.  Show  what  new  tones  will  be  required,  when  a  piece  of  nmsic  passes 
suddenly  from  the  Key  of  C  Major  into  that  of  A [7  JMajor. 

282.  If  music  in  C  Major  passes  through  the  Keys  of  F  and  B\)  to  EI7, 
show  tliat  the  C  of  this  last  Key  is  not  of  the  same  pitch  as  the  original  C. 

283.  What  is  meant  by  temperament? 
284.  Starting  with  d,  if  four  true  fifths  be  tuned  upwards,  and  then  two 

octaves  downwards,  show  that  the  note  tlms  obtained  is  one  comma  sharp(!i 
than  tlie  true  m. 

285.  Siiow  liow  the  twelve  notes  of  the  Octave,  in  mean-tone  tempera- 
ment, are  determined. 

286.  Why  is  mean-tone  temperament  so  called  ? 

287.  Compai-e  the  Consonant  intervals  in  mean-tone  temperament  with 
the  same  in  true  intonation. 

288    What  is  the  principle  of  Equal  Temperament  ? 
289.  Wiiat  is  the  Comma  of  Pythagoras  ?     How  is  it  obtained  ? 
290.  Compare  the  consonant  intervals  in  equal  temperament  with  tlio 

same  in  true  intonation. 

291.  Compare  the  consonant  intervals  in  equal,  with  the  same  in  mean- 
tone  temperament. 

292.  What  are  the  advantages  and  disadvantages  of  (I)  mean-tone 
temperament,  (2)  equal  temperament  ? 

293.  lu  equal  temperament,  if  C=522,  what  sliould  be  the  vibration 
number  of  C|f  ? 

294.  Taking  A=435,  calculate  the  vibration  numbers  of  the  other  eleven 
tones  of  the  scale  in  equal  temperament. 

295.  Taking  C=522-,  calculate  the  vibration  numbers  of  the  notes  of 
the  diatonic  scale  in  true  intonation. 

296.  Taking  C=522,  calculate  the  vibration  numbers  of  the  notes  of  the 
diatonic  scale  in  equal  temperament. 

297.  Taking  C=522,  calculate  the  vibration  numbers  of  the  notes  of  the 
diatonic  scale  in  mean-tone  temperament. 

298.  Ascertain  the  vibration  nmnbers  of  Ck,  E[?,  GJ,  F;|,  and  Bj?  in 
question  295. 

299.  Ascertain  the  vibration  nmnbers  of  C|;,  E|7,  G^,  Fj,  and  B(?  in 
question  296. 

300.  Ascertain  the  vibration  numbers  of  Cj,  EJ?,  GJ,  F|;,  and  B|7,  Id 
question  297. 
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THE  EOYAL  COLLEGE  OF  OEGANISTS. 

1896  and  1897. 

1.    Write  out  the  harmonic  series   up  to  the  twelfth  harmonic 

commencing  with  the  following  note  as  the  generator. — 

iMi: I 

i 
Answer.  *    n       jl_  *e>- -Q- $— 

M=^=^-         - —  ^^"^"^ 
*  Appi-oximately. 

2.  Explain  the  difference  between  equal  temperament  and  just 
temperament. 

Ans. — This  question  is  wrongly  worded ;  there  is  no  such  thing  ai 
just  temperament,  just  or  true  intonation  is  meant.  In  true  intonation, 
the  relations  betwen  the  tones  of  the  scale  are  those  given  on  p.  231, 
middle  column.  In  equal  temperament  the  octave  is  divided  into 
twelve  equal  parts,  each  part  forming  an  equal  tempered  semitone,  two 
of  these  semitones  forming  a  tone.  Consequently  none  of  the  equal 

tempered  intervals,  except  the  octaves,  are  the  same  as  in  true  intona- 
tion. The  amount  by  which  these  intervals  differ  from  the  true 

intervals  is  given  on  pp.  241  and  242. 
3.  What  is  the  vibration  ratio  of  a  minor  tone?  State  between 

which  degrees  of  the  major  diatonic  scale  a  minor  tone  occurs  when 
tuned  according  to  just  temperament. 

Ans. — Temperament  should  be  intonation.  Vibration  ratio  of  a 

minor  tone  is  '/.  Between  2nd  and  3rd,  and  5th  and  6th— that  is, 
between  r  m,  and  s  1. 
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MUS,BAC.    (Cantab.). 
May  21,  1895.     9  tiU  12. 

1.    Explain  with  help  of  a  diagram  how  a  given  particle  of  the  air 

alters  its  position  as  a  train  of  sound-waves  passes  over  it.    Show  how 
we  can  determine  graphically  what  happens  when  two  trains  of  waves 
pass  over  the  particle  simultaneously. 
Ans.  1  • 

2  • 

3  • 
4  • 
5  • 
6  • 
7  • 
8  • 
9  • 

Let  the  dot  on  line  1  represent  the  particle  at  rest.  "When  the  condensed 
part  of  the  wave  reaches  it  from  left,  it  began  to  travel  to  the  right,  as 
«een  in  line  2.  In  3,  it  has  reached  its  extreme  position  and  begins  to 
return  a3  at  4.  In  5,  it  has  reached  its  orignal  position,  and  is  still 
travelling  towards  left  as  at  6.  In  line  7,  it  has  reached  its  extreme 
left  hand  position,  and  then  returns,  as  at  8,  to  its  original  position  at 
line  9,  the  wave  having  now  just  passed  over  it. 

The  second  part  of  the  question  is  fully  answered  at  p.  82. 
2.  Describe  experiments  that  show  the  intensity  of  sound  to  be 

connected  with  the  amplitude  of  vibration  of  the  air,  and  the  pitch 
with  the  period  of  vibration. 

Ans. — For  first  part,  see  p.  52,  last  eight  lines,  and  p.  53,  first 
fourteen.  For  second  part,  either  Wheel  Syren,  pp.  29  and  30,  or 

the  Syren  of  Gagniard  de  Latour,  pp.  31  and  32,  or  Savart's  Toothed 
Wheel,  p.  6. 

3.  (a)  Explain  how  or  why  a  rise  of  temperature  affects  the  pitch  of 
the  wind  instruments  in  an  orchestra. 

(A)  If  the  velocity  of  sound  is  1,120  ft.  per  sec.  at  60°  and  1,140  ft.  per 
sec.  at  77**,  how  much  would  a  trumpet  player  have  to  alter  the  length  of 
the  tube  of  his  instrument  in  order  to  keep  to  his  original  pitch,  if  the 

temperature  of  the  concert  room  rose  from  60<*  to  77''  ?  (Assume  the 
length  of  tube  in  a  trumpet  to  be  5ft.). 

Ang.  {a)  See  p.  100. 
{b)  Length  of  trumpet  is  5ft.,  therefore  length  of  sound-wave  at 

60*  is  10ft.,  and  vibration  number  of  fundamental  is  *|f  °  =  112. 

Hence  length  of  sound-wave  at  77°  must  be  Vrs°  =  *A^  =  10  ̂ V : 
and  length  of  trumpet  must  be  5  3%-  ft.  The  player  therefore  would 

have  to  lengthen  his  instrument  by  -^  ft.,  that  is  3^  X  V'  =  jf  = 
H  =  It't  in. 
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4.  (a)  Describe  the  construction  of  the  principal  classes  of  pipes  used 
in  an  organ,  explaning  how  each  is  tuned. 

(b)  What  is  the  scientific  explanation  of  the  effect  of  mixture  stops  ? 
Ans.  (a)  See  pp.  99  and  112,  for  construction ;  and  pp.  100  and  112» 

for  tuning. 

(*)  See  p.  109. 
5.  (a)  State  how  the  pitch  of  a  vibrating  string  depends  on  the 

density,  tension,  and  length  of  the  string. 
[b)  Explain  the  application  of  these  laws  to  the  construction,  method 

of  tuning,  and  use  of  a  violin. 
Ans.  (a)  See  p.  87,  (4)  (3)  and  (1). 

(i)  See  pp.  88,  89,  90. 
6.  (a)  What  are  partials  or  overtones  ? 

(i)  Give  the  first  ten  overtones  of  an  open  pipe  whose  funda> 
mental  is — 

-&- 

{c)  State  which  of  these  would  differ  most  markedly  from  the 
corresponding  notes  on  an  equally  tempered  pianoforte,  and  which 
would  agree  most  nearly. 

Ans.  (a)  See  p.  84. 

7      8       9     nlO 

i^=~s^^^^ 
Z2: 

:_'   a: I 
6  and  10  only  represent  the  pitch  approximately. 
1 .  3,  and  7  would  agree  perfectly. 

•2  and  5  would  agree  very  nearly. 
8  would  agree  fairly  well. 
4  and  9  would  be  yV  comma  sharp. 

7.    A  vibrating  tuning-fork  is  held  over  a  tall  cylinder,  into  which 
water  is  gradually  poured. 

(a)  Describe  and  explain  the  variation  that  takes  place  in  the  sound 
of  the  fork. 

(b)  How  could  you  employ  this  apparatus  to  find  the  velocity  of 
sound,  the  period  of  vibration  of  the  fork  being  given. 
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Ans.  (a)  Probably  at  first  the  sound  of  the  fork  would  not  be  much 
altered,  but  as  the  water  is  gradually  poured  in,  the  sound  will 
gradually  increase  in  intensity  up  to  a  maximum  and  then  fall  off 
again.  If  the  cylinder  is  long  enough  and  the  water  is  still  gradually 
poured  in,  this  effect  may  be  repeated.  For  explanation,  see  pp.  61 
and  62.  For  explanation  of  repetition,  it  will  be  seen  from  pp.  61 
and  62  that  resonance  takes  place  when  length  of  vibrating  column  is 

i,  T,  or  ̂ ,  &c.,  the  length  of  sound-wave,  but  the  maximum  intensity 
is  obtained  in  first  case. 

(b)  First  ascertain  by  repeated  trials,  the  length  of  air  column  that 
gives  maximum  resonance  ;  measure  this  length  ;  add  to  it  ̂   radius  of 
cylinder ;  multiply  four  times  this  result  by  the  vibration  number  of 
the  fork. 

8,  (a)  Discuss  the  relative  consonance  of  an  octave,  a  fourth,  and  a 
minor  third. 

{b)  Why  is  it  that  in  any  system  of  temperament,  the  octaves  must 
be  true,  whilst  the  minor  thirds  may  be  considerably  different  from 
true  minor  thirds  ? 

Am.  {a)  See  pp.  187,  188,  189,  191. 

(b)  This  follows  from  the  perfect  definition  of  the  octave  and  the 
vague  definition  of  the  minor  third.     See  pp.  177  and  181. 

9.  Two  tuning-forks  very  nearly  an  octave  apart  and  free  from 
overtones  give  beats  when  sounded  together.  What  is  the  cause  of  the 
beats  ? 

Ans. — Say  vibration  numbers  of  forks  are  202  and  400.  These 
generate  a  third  tone  the  vibration  number  of  which  =  198  ;  and  this 

with  the  lower  fork  produces  202 — 198  =  four  beats  per  sec. 

MUSBAC.    (Cantab.). 

May  26,  1896.     9  till  12. 

1.  (a)  Explain  the  mpaning  of  the  terms— simple  harmonic  vibration, 
wave  front,  difference  of  phase,  wave  length. 

{b)  Give  a  diagram  illustrating  the  motion  of  a  series  of  particles  as  a 
trant verse  wave  passes  over  them. 

(<j)  Show  that  the  wave  length  is  equal  to  the  velocity  of  the  wave 
multiplied  by  the  time  of  vibration  of  one  of  the  particles. 
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Ant.  (a)  Suppose  a  point  Q  revolves 

round  the  circle  A  Q  B  •with  uniform 
speed,  and  also  let  a  point  P  be  vibrating 
to  and  fro,  along  the  line  A  D,  then  if  the 
imaginary  straight  line  connecting  P 
and  Q  is  alwajs  parallel  to  P  Q,  then 
point  P  is  said  to  be  executing  simple 
harmonic  or  pendular  vibrations.  See 
p.  81.  In  figure  30,  p.  54,  in  which  the 
vibrating  body  is  supposed  to  be  at  A ; 
the  spherical  surface  at  D  is  a  wave  front, 
that  is,  a  continuous  surface,  at  every 
point  of  which  the  air  is  in  the  same  stage  of  vibration  at  the  same 
moment.    B  and  C  are  also  wave  fronts. 

Suppose  two  series  of  equal  waves  pass  over  the  same  particles  of 
air,  if  one  series  is  half  a  wave  length  before  the  other,  they  are  said  to 
be  in  opposite  phase  ;  if  one  is  a  quarter  wave  length  behind  the  other, 
the  difference  of  phase  is  one  quarter ;  and  so  on.  See  pp.  136,  137, 
and  144.    For  wave  length  see  p.  22. 

{b)  See  either  p.  12  or  14. 

(e)  It  is  shown  on  p.  13  that  each  particle  makes  one  complete  vibra- 
tion in  same  time  as  wave  takes  to  travel  its  own  length.    Now  if  n 

wave  length— that  is,  the  time  of  vibration  of  each  particle.  Now  it  is 
shown  on  p.  39  that  wave  length  =  velocity  of  sound  (v)  divided  by 
the  vibation  number  (w)  or 

wave  length  =  ̂  

(i.e.)       „  =  v  X  ̂^ 
,,  =  velocity  of  wave  X  time  of  vibration  of  one  of  the 

particles. 
2.  {a)  Describe  some  accurate  method  of  finding  the  velocity  of 

sound  in  air. 

(i)  How  would  the  velocity  be  affected  if  the  height  of  the  barometer 
changed,  or 

{c)  If  the  temperature  changed  ? 

Ans.  (a)  See  pp.  19  and  20.  The  air  between  the  two  stations  should 
be  at  rest. 

(b)  Not  at  all. 
{c)  Velocity  is  increased  by  a  rise  of  temperature.    See  pp.  20  and  100. 
3.  (a)  A  string  attached  to  two  rigid  supports  gives  out  very  little 

sound  when  made  to  vibrate.  If  attached  to  a  sound  board  the  sound 

is  much  louder.    Explain  this  and  give  instances  of  similar  effects. 
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{b)  Does  the  presence  or  absence  of  the  sound-board  have  any  effect 
on  the  length  of  time  the  string  will  continue  to  vibrate  ? 

Ans.  {a)  See  pp.  86  and  87. 

{b)  Yes ;  the  string  if  connected  with  a  sound-board  does  not  vibrate 
so  long  as  it  would  if  it  were  not  so  connected. 

4.  (o)  When  a  closed  organ  pipe  is  blown  too  strongly  the  note  goes 
up  a  twelfth.  In  the  case  of  an  open  pipe,  it  goes  up  an  octave.  Give 
the  reason  for  this. 

{b)  Calculate  the  approximate  vibration  number  of  a  closed  organ 
pipe  2  ft.  long,  assuming  the  velocity  of  sound  to  be  1,100  ft.  per  sec. 

Ans.— See  pp.  107,  108,  and  102. 

Approximate  vibration  number  =  Y^*  =  137"5 
5.  (a)  Why  is  the  interval  beween  two  notes  estimated  by  the  ratio 

of  the  vibration  numbers  and  not  by  their  difference  ? 

{b)  What  are  the  vibration  ratios  of  a  fifth,  a  major  third,  and  an 
equal  temperament  semitone. 

Ans.  (a)  Because  the  ratio  of  the  vibration  numbers  for  any  par- 
ticular interval  is  constant ;  while  the  vibration  numbers  themselves 

vary  with  the  pitch,  and  therefore  their  difference  would  vary. 

(*)  i  ;  i  ;  y I  =  M  nearly. 

6.  Explain  the  production  of  the  scale  on  the  slide  trombone. 

Ans. — See  p.  114. 
7.  Why  are  the  various  notes  of  a  flute  or  clarinet  put  out  of  tune 

with  each  other  when  the  joints  of  the  instrument  are  pulled  out  so  as 
flatten  the  pitch  as  much  as  possible. 

Ans. — The  fundamental  note  of  such  an  instrument  is  that  due  to 

the  whole  length  from  mouth-piece  to  the  other  end.  The  other  notes 
are  due  to  the  distance  between  the  mouth-piece  and  the  apertures 
corresponding  to  these  notes.  Now  these  distances  are  at  certain 
ratios  to  the  whole  length.  If  the  joints  be  lengthened  all  these  ratios 
are  changed,  and  therefore  the  intervals  are  not  the  same  as  before. 

8.  (a)  Investigate  by  Helmholtz's  method  the  relative  consonance  of 
a  fourth  and  a  major  third. 

{b)  Why  does  the  ear  recognize  want  of  correct  intonation  in  the 
case  of  the  octave  more  easily  than  in  the  case  of  the  major  third  ? 

Ans.  (a)  Seep.  191, 

(b)  In  the  octave,  powerful  beats  are  found  between  loud  first  and 
second  partials.  In  the  major  third  much  fainter  beats  between 
weaker  fourth  and  fifth  partials,  see  pp.  176  and  180. 
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ROYAL  UNIVERSITY  OF  IRELAND. 

Mus.  Bac.    First  Examination,  1895. 

1.  Male  and  female  voices  differ  in  pitch  and  quality.  Acount  for 
these  differences. 

Ans. — The  larynges  of  women  are  smaller  than  those  of  men,  the 
vocal  cords  are  smaller  and  vibrate  more  quickly,  hence  the  difference 
in  pitch.  When  a  man  and  a  woman  are  singing  a  tone  of  same  pitch 
and  with  about  the  same  intensity  there  is  no  specific  difference  of 

quality.  A  man's  low  tones  are  richer  in  partials  than  a  woman's  high 
tones,  hence  the  corresponding  difference  in  quality. 

2.  (a)  "What  is  meant  by  the  wave-length  of  a  note  ? 
(A)  When  sound  passes  from  one  medium  to  another  (as  from 

one  gas  to  another  of  different  density),  what  change,  if  any,  takes 

place  in  the  wave-length  ? 
Ans.  (a)  See  p  22. 
{b)  The  velocities  of  sound  in  different  gases  vary  inversely  as  the 

square  roots  of  their  densities.  (See  p  20.)  Therefore  when  a  sound 
passes  from  one  gas  into  another  of  greater  density  its  velocity  is 
diminished.  Now  the  wave  length  equals  the  velocity  divided  by  the 

vibration  number  (see  p.  39) ;  therefore,  in  this  case,  the  wave-length 
is  diminished.  Similarly,  if  a  sound  passes  into  a  gas  of  less  density 

its  wave-length  is  increased. 
3.  Describe  a  method  of  accurately  determining  the  velocity  of 

sound  through  air. 

Ans.— Bee  p.  268. 
The  result  will  be  the  more  accurate,  the  farther  the  experimenters 

are  apart.  It  will  also  be  more  exact,  if  each  observer  make  a  signal, 
say  fires  a  cannon  and  both  note  the  time  between  the  flash  and  the 
report,  the  mean  of  the  two  observations  being  taken. 

4.  (a)  The  temperature  of  air  through  which  sound-waves  are 
propagated  is  supposed  to  be  subject  to  changes  of  an  alternating 
character. 

Describe  the  nature  of  these  changes,  and  give  an  explanation  of 
them. 

(*)  Is  there  any  change  of  temperature  of  a  continuous  character, 
and  if  £0,  to  what  would  you  attribute  it  ? 

Ans.  (a)  When  a  gas  is  compressed,  its  temperature  rises,  heat  being 
evolved  ;  when  a  gas  expands  freely,  its  temperature  falls.  Hence  the 

temperature  of  the  air  through  which  a  sound-wave  paeses  rises  very 
slightly  at  a  point  through  which  a  condensation  is  passing,  and  falls 
very  slightly  when  the  rarefaction  follows. 
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(b)  The  temperature  of  the  air  through  which  a  series  of  sound- 
waves is  passing  is  very  slightly  raised  in  temperature,  in  consequence 

of  the  kinetic  energy  of  the  moving  air  particles  being  slowly  trans- 
formed into  the  kinetic  energy  of  heat,  just  as  the  energy  of  a  train  in 

motion  is  changed  into  heat  when  the  brakes  are  applied  and  it  is 
brought  to  rest. 

5.  Two  organ  pipes,  one  open  and  the  other  closed,  are  sounding 
the  same  fundamental  note. 

(o)  What  is  the  ratio  of  the  lengths  of  the  pipes  ? 
{b)  Are  the  notes  exactly  alike  ? 
(c)  And  if  not,  account  for  their  difference. 
Ans.  (a)  Length  of  the  open  pipe  :  length  of  the  closed  pipe  as  2  : 1. 

{b)  No. 
(<j)  The  notes  are  both  more  or  less  compound,  that  from  the 

open  pipe  will  consist  of  the  fundamental,  its  octave,  octave  fifth, 
and  so  on ;  while  that  from  the  closed  pipe  will  consist  of  the  partials 
of  the  odd  series  only,  viz.,  the  fundamental,  octave  fifth,  &c. 

6.  {a)  What  is  meant  by  resonance,  and  how  are  resonant  effects 
explained  ? 

{h)  A  column  of  air  resounding  to  a  note  256  complete  vibrations 
per  second  is  obtained  by  filling  a  tall  narrow  jar  with  water,  and  then 

allowing  the  water  to  escape  gradually  through  a  stop -cock  at  the 
bottom,  till  maximum  resonance  is  obtained.  Find  at  least  two  other 
notes  to  which  the  fiame  column  of  air  would  resound. 

Ans.  (a)  See  pp.  67  and  58. 

(b)  256  X  3  =  768  and  256  X  5  =  1280. 

ROYAL   UNIVERSITY   OF   IRELAND. 

Honour  Examination  in  Music,  1895. 

1.  Give  an  expression  for  the  velocity  of  propagation  of  transverse 

vibrations  along  a  stretched  string.  Deduce  Bernoulli's  Laws  for  the 
vibrations  of  stretched  strings. 

Ans.— See  p.  87. 
2.  Explain  how  it  is  that  in  a  column  of  air  in  stationary  vibration, 

the  length  of  a  ventral  segment  is  a  half- wave  length. 
Ans.— See  pp.  102,  105,  106. 
3.  (a)  What  is  meant  by  a  gamut  of  equal  temperament  ? 
ib)  Find  the  arithmetical  value  of  the  interval  of  a  tone  on  this 

gamut. 
Ans.  {a)  See  p.  238. 

(b)  Nearly  Ll^  =  ̂ ^ 1  400 
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4.  Describe  the  changes  in  form  observed  in  the  Lissajous'  figure 
obtained  by  using  two  tuning-forks,  the  pitch  of  one  being  nearly 
the  octave  of  the  other. 

Ans. 

5.  (a)  How  would  you  produce  a  flame  sensitive  to  sound. 
{b)  Give  a  method  of  measuring  the  wave-length  of  a  note  of  very 

high  pitch  by  means  of  a  sensitive  flame. 
Ans,  (a)  Bum  coal  gas  from  a  pin-hole  burner  at  a  pressure  of  ten 

inches  of  water.  Adjust  the  supply  of  gas  by  the  tap,  so  that  the 
flame  is  just  on  the  point  of  flaring.  The  flame,  which  is  now  from 
15  to  20  inches  long,  is  very  sensitive  to  any  movement  of  the  air  just 
above  the  burner. 

(A)  Place  the  source  of  sound  at  some  distance  from  a  wall.  The 
direct  and  reflected  waves  will  then  interfere,  producing  stationary 
nodes  along  a  line  drawn  from  the  source  of  sound  at  right  angles  to 
the  wall ;  and  if  the  jet  of  the  sensitive  flame  is  moved  along  this  line 
it  will  flare  everywhere  except  at  the  nodes,  the  positions  of  which  are 
thus  discovered.  The  wave-length  is  obviously  twice  the  distance 
between  two  consecutive  nodes. 

6.  Describe  the  construction  and  uses  of  Helmholtz'  Double  Syren. 
Ans. — For  construction,  see  pp.  33  and  34. 
Uses  :  1st,  To  ascertain  the  vibration  number  of  any  note,  by  means 

of  a  counting  apparatus  not  shown  in  flg.  22.  2nd,  To  demonstrate 
the  exact  vibration  ratios  of  the  most  important  musical  intervals. 
3rd,  To  illustrate  and  prove  the  fundamental  facts  concerning  the 
theory  of  beats.  Beats  are  produced  in  this  instrument  by  rotating 
the  handle  of  the  wheel  shown  in  fig.  22  at  the  top  right  hand  side. 
When  this  wheel  is  rotated  in  one  way  the  upper  sound  chest  revolves 
in  same  direction  as  the  discs,  thus  diminishing  the  vibration  number 
of  the  upper  syren ;  when  rotated  the  other  way,  the  upper  sound 
chamber  turns  in  the  contrary  direction  to  the  discs,  so  increasing  the 
vibration  number  of  this  same  syren.  Beats  are  produced  in  either 
case. 

Honour  Examination  in  Music 

1  and  2.    Not  acoustical  questions. 
3.  (a)  Distinguish  between  DifEerence  and  Summation  Tones. 
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{b)  And  give  in  approximate  notation,  those  which  are  attached  to 
the  octave,  fifth,  fourth,  and  major  third.  « 

Ans.  {a)  See  p.  135. 
(b)  See  pp.  130  and  p.  134. 
4.  In  equal  temperament,  to  what  extent  does  each  interval  ol  the 

major  scale  depart  from  accuracy  ? 

Ans.—See  pp.  241,  242,  244 
5  and  6.     Not  acoustical  questions. 
7.  Write  out  the  fractions  representing  the  vibration  ratios  which 

each  interval  of  the  major  scale  bears  to  that  next  below  it. 

^«*.— Seep.  227. 
8  (a)  What  was  the  Mean  Tone  system  of  Temperament  ? 
(J)  About  what  period  was  it  in  general  use  ? 
Ans.  (a)  See  pp.  234  to  238. 
{b)  It  prevailed  aU  over  the  Continent  and  England  for  centuries.  It 

disappeared  from  pianofortes  in  England  about  1840,  but  at  a  later 
date  from  organs.  All  the  organs  at  the  Exhibition  of  1851  were  tuned 
in  this  temperament. 

9.  Describe  any  one  of  the  modern  contrivances  for  obtaining  "just 
intonation." 
Ans—  See  pp.  245,  246. 
10.  Not  an  acoustical  question. 

ROYAL,  VICTORIA  UNIVERSITY. 
First  Mus.B  ,  1896.     Threb  Hours. 

1.  (a)  How  has  it  been  ascertained  that  the  velocity  of  sound  in  air 
is  about  1,120  ft.  per  second  ? 

{b)  How  does  a  rise  in  the  thermometer  affect  the  velocity  ? 
Ans.  (a)  Seep.  270 
(J)  See  p.  100. 
2.  Define  the  terms  amplitude^  wave-length,  phase,  and  form  of  a 

vibration. 

Ans.—  ̂ ee  p.  22  and  p.  258. 
3.  From  the  major  and  minor  harmonic  triads  1,  IJ,  1^  ;  and  1> 

1|,  1|,  deduce  the  intervals  of  (a)  the  diatonic  scale;  {b)  comma,  (c) 
Pythagorean  comma,  and  {d)  diesis. 

Ans.  {a)  Multiply  the  ratios  1  :  IJ  :  1|  by  4,  and  we  get  4:5:6. 
Then  proceed  as  at  pp.  45,  46,  and  47. 
(b)  See  p.  50. 
{c)  See  p.  239. 
{d)  The  Greater  Diesis  is  the  difference  between  an  octave  and  three 

major  thirds. 



274  HAND-BOOK  OF  ACOUSTICS, 

The  Smaller  Diesis  is  difference  between  five  major  thirds  and  a 
twelfth. 

=  ixixixixix  i  =  mi 
4.  If  a  copper  wire,  density  9,  75  cm.  in  length,  and  "6  m.m.  in 

thickness,  gives  200  vibrations  per  second  when  stretched  by  a  weight 
of  10  kilogrammes,  how  many  vibrations  per  second  will  a  steel  wire, 
density  7  5,  one  metre  in  length,  and  1mm.  in  thickness,  give  when 
stretched  by  27  kilogrammes  ? 

Ana. — By  the  laws  given  on  pp.  87  or  96  number  of  vibrations 
per  sec. 

=  200  X     v^9  75        -6         y 21 L   V   s/         X      = 
775        100         1  710 

200    X   3   X   6   X  3  Xv/27    _5X3X6X3X   y^27   _ 

4  X  10  X  yi  5  X  ̂ 10  ^75 

270  X  ̂  =  ̂™   ̂   1    =    .62 

./25  
' 5.  (a)  Find  all  the  overtones  that  are  possible  in  an  organ  pipe  closed 

at  one  end.  (b)  Draw  a  figure  to  show  the  directions  in  which  the  air 
particles  are  moving  at  a  given  Instant  when  the  pipe  is  emitting  its 
first  overtone, 

Ans.  {a)  See  pp.  1U6  and  107. 
(*) 

->         >  -> 

^—
 

6.  Give  a  brief  account  of   what  causes  difference  in  timbre  or 

quality  in  sounds. 

Ans. — See  pp.  74  and  75. 
7.  (a)  Describe  how  reeds  vibrate. 
(*)  Explain  why  the  tones  they  give  are  generally  harsh. 
Ans.  (a)  See  p.  110. 
(*)  See  p.  111. 
8.  {a)  Explain  what  is  meant  by  the  interference  of  two  sounds. 
(*)  Describe  experiments  illustrating  it. 
Ans.  (a)  See  pp.  136,  137. 
(b)  See  p.  139  or  140  or  141. 

9.  Draw  diagrams  to  show  the  result  of  oomponiding  a  note  with 
its  octave  in  two  different  phasen. 
^n#.— See  p.  83. 
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UNIVERSITY    OF   LONDON. 

l:rrERMEDiATE  Mus.B.  Examination,  1895. 

Morning,  10  to  1. 

1.  (a)  How  would  you  prove  that  the  pitch  of  a  note  depends  solely 
on  the  number  of  vibrations  received  per  second  by  the  hearer. 

{b)  And  that  the  same  number  per  second  always  gives  the  same  note. 

Am.  (a)  In  Savart's  Toothed  Wheel  and  in  the  Syren,  as  the  speed 
increases  or  decreases,  the  pitch  rises  or  falls,  and  nothing  is  altered 
except  the  number  of  vibrations  received  per  second  by  the  hearer. 

{b)  Tuning-forks  vibrating  the  same  number  of  times  per  second  are 
found  to  give  the  same  note.    The  same  with  other  instruments. 

2.  (a)  Describe  and  explain  the  mode  of  using  a  tonometer,  consist- 
ing of  a  series  of  forks  for  the  determination  of  frequency  of  vibration. 

(b)  For  what  reason  are  forks  better  than  reeds  in  such  a  tonometer  ? 

Ans.  {a)  See  pp.  150  to  152. 
(b)  See  p.  151. 

3.  {a)  How  would  you  produce  (1)  transverse  and  (2)  longtitudinal 
vibrations  in  a  string ;  and  (b)  how  would  you  in  each  case  show  that  the 
vibrations  were  of  the  kind  stated  ? 

(c)  How  would  you  obtain  the  various  harmonics  ? 

Ans.  {a)  (1)  See  p.  86.     (2)  See  p.  118. 

(b)  By  placing  a  rider  on  the  string  ;  or  if  the  vibrations  were  very 
small,  by  viewing  an  illuminated  point  on  the  vibrating  string  with  a 
low  power  miscroscope. 

(c)  (1)  Seep.  92.     (2)  See  p.  118. 
4.  A  telegraph  wire  is  50  metres  long,  and  is  stretched  with  such  a 

force  that  a  transverse  wave  travels  along  it  with  velocity  125  metres 
per  second,  while  a  longitudinal  wave  travels  with  velocity  3,700  metres 
per  second,  (a)  Find  the  frequency  of  the  fundamental  mode  of  vibration 
for  each  kind  of  vibration,  (b)  To  what  kind  of  vibration  do  you  think 
it  most  likely  that  the  sound  heard  at  a  telegraph  pole  belongs  ?  [c)  Give 
a  reason  for  your  opinion,  {d)  How  would  you  explain  the  beating 
often  heard  near  the  pole  P 

Ans.  (a)  Transverse  wave. 

N  =  —    (See  p.  87.) 
\  2L 

125  1 

Therefore  N  =  — j-    ><    f55    =     ■^* 
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Longitudinal  wave. 

N  =  ̂-    (See  p.  119.) 
=  37 

26 

_  3700 

■"  Too 

(J)  Transverse  vibrations  ;  harmonics. 

{c)  Exciting  agent:  the  wind  which  cannot  excite  longitudinal 
vibrations. 

(d)  The  beating  is  due  to  high  partials. 
5.  (a)  What  is  meant  by  a  combination  tone  ? 
(b)  How  may  one  be  produced  so  as  to  be  directly  audible  ? 
(e)  Give  a  general  explanation  of  the  production  of  such  a  tone. 
Ans.  (a)  See  p.  135. 
(*)  See  p.  131. 
le)  See  pp.  133  and  134. 

Afternoon.     2  to  5. 

1  (a)  What  effect  will  be  produced  by  a  rise  in  temperature  on  the 
pitch  of  the  notes  given  out  (1)  by  stretched  strings,  (2)  by  organ  pipes  ? 

(b)  An  organ  pipe  sounds  at  O*'  0.  a  note  with  256  vibrations  per  second. 
What  will  be  the  frequency  of  the  note  given  out  by  the  same  pipe  at 
20°  C.  ? 

Ans.  (a)  1.  See  p.  90.     2.  See  p.  100. 

(A)  Frequency  =  256  V        "^       (See  p.  100.) 273 

=  265-2 
2.  The  velocity  of  sound  through  air  at  0**  C.  is  1,100  ft.  per  second. 

What  will  be  the  velocity  of  sound  through  hydrogen  at  the  same 

temperature  ?  1  litre  of  hydrogen  weighs  -0896  grms. :  1  litre  of  air, 
1'293  grm.  at  0^  C.  and  atmospheric  pressure.) 

Ans. — Velocity  in  hydrogen 

71.293 
=  1100   X  V  — — .     (See  p.  20.) 

•0896     ̂        ̂         ' 
=z  4,179  ft.  per  second. 

3.  (a)  Explain,  by  the  aid  of  carefully  drawn  diagrams,  how  beats 
are  produced,  and 

(b)  Show  how  to  find  the  number  of  beats  per  second  when  the 
frequencies  of  the  component  beats  are  given. 
Ans.— See  p.  145. 
(h)  See  p.  153. 
4    (a)  Define  the  terms  node  and  loop. 
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{b)  How  would  you  demonstrate  their  existence  (1)  in  vibrating 
strings,  (2)  in  organ  pipes  ? 

Atis.  (a)  See  p.  96  (loop  =  ventral  Eegment)  and  p.  102. 
{b)  (1)  See  p.  92. 
(2)  See  pp.  103  and  104. 

5.  If  the  stem  of  a  tuning-fork  is  pressed  against  a  table,  the 
sound  is  much  louder  than  before. 

{a)  Explain  this  and  (*)  give  as  many  illustrations  as  you  can  of  the 
eame  principle. 

{c)  "Will  the  tuning-fork  vibrate  for  a  longer  or  shorter  time  when 
pressed  against  the  table  than  when  held  in  the  hand. 

Ans.  {a)  See  p.  123  and  p.  186. 

(b)  String  and  sound-board.    See  p.  186. 
(e)  See  p.  64. 

1896. 
Morning.     10  to  1. 

1.  How  has  the  velocity  of  sound  been  determined  (1)  in  air,  (2)  in 
water  ? 

Ans.  (1)  See  page  p.  270. 
(2)  In  a  similar  manner.  The  sound  was  made  by  a  hammer  striking 

a  bell  under  water,  the  same  lever  which  moved  the  hammer  igniting 
some  gunpowder  above.  The  sound  through  the  water  was  perceived 
by  lowering  into  the  water  the  wide  end  of  an  ear  trumpet  covered  with 
membrane  and  turned  towards  the  direction  of  the  sound. 

2.  Describe  fully  the  apparatus  you  would  use,  and  the  mode  in 
which  you  would  use  it,  to  prove  that  the  frequencies  of  C,  E,  and  G 
are  in  the  ratios  of  4  :  5  :  6. 

^M».— See  Helmholtz'  Syren,  pp.  33,  34,  and  45. 
3.  A  steel  wire,  density  7*8  is  stretched  by  a  weight  of  39  lbs.  and 

gives  a  note  of  frequency  n.  A  string,  density  1,  has  double  the  length 
and  double  the  diameter  of  the  steel  wire.  With  what  weight  must  it 

be  stretched  to  give  frequency  n_ 
T 

Ans. — Let  /  and  d  denote  length  and  density  of  steel  wire,  and  let  x 
denote  weight  required  then,  from  p.  87 

n   =  V^39~  ^      yi I  X  d  X     /—  I  A  a 

V  7-8 

and 
2      ~     2  IX  2d  ̂      /I  —     4:  IX  a 

y- 
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thereforen  X  -    =    "^-^  X  ̂ ^ n  id 
-y. 

••'•  \/x     =    2   v^5 
or  a;     =    20 

4.  An  organ  pipe,  open  at  both  ends,  is  blown  so  hard  that  it  sounds 
only  the  octave  of  the  fundamental  tone,  (a)  Describe  the  mode  of 
vibration,  {b)  Draw  a  figure  indicating  the  directions  of  motion  in  the 
different  parts  of  the  pipe  at  a  given  instant,  (c)  How  would  you 
experimentally  show  the  positions  of  the  nodes  ? 

Ans.  (a)  See  p.  103. 

(*) 

<r-        <           <-      -^        > 

(<j)  See  pp.  103  and  104. 

5.    Give  a  brief  account  of  Helmholtz'  Theory  of  Dissonance. 
Ans. — See  Summary,  p.  172 

Afternoon.     2  to  5. 

1.  How  could  you  show  that  the  velocity  of  sound  through  air  at  a 
constant  temperature  is  independent  of  the  pressure  ? 

Ans.— The  pitch  of  an  organ  pipe  depends  upon  the  velocity. 
Therefore,  by  showing  that  the  same  pipe,  at  same  temperature  gave  a 
note  of  precisely  the  same  pitch  upon  two  different  days  when  the 
pressure  of  the  air  was  distinctly  different,  the  above  point  would  be 

proTcd. 
2.  Explain  by  the  use  of  diagrams,  how  the  quality  of  the  note 

emitted  by  a  plucked  string  depends  upon  the  manner  of  plucking. 

Ans. — See  pp.  94  and  95. 
3.  Explain  why  sound  travels  badly  against  the  wind. 
Ans. — The  velocity  of  wind  is  less  near  the  surface  of  the 

earth  than  above  because  of  friction.  Consider  in  the  first  place, 
a  wave  surface  travelling  with  the  wind.  For  simplicity  of 
explanation,  suppose  this  surface  to  be  plane  and  perpendicular 

to    the    earth's    surface;    then,    as    the    velocity    of    the    wind   is 
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greater  above,  this  plane  will  not  remain  vertical,  but  will  be 
tilted  over  more  and  more  towards  the  earth;  that  is,  the  sound 
will  take  a  more  or  less  downward  direction  and  keep  near  the 
surface.  Now  consider  a  wave  surface  travelling  against  the  wind. 
The  upper  part  of  the  wave  surface  will  now  lag  behind  the  lower  so 
that  the  wave  surface  will  be  tilted  upwards,  that  is,  the  sound  soon 

leaves  the  earth  altogether  and  passing  over  the  observer's  head  is  lost 
above. 

4.  (a)  Describe  an  experiment  proving  the  interference  of  two  sounds, 
and  lb)  give  some  familiar  examples  of  the  efEects  of  interference. 

Ans.  (a)  See  p.  139  or  140. 
(b)  See  pp.  141,  147. 

5.  (a)  What  is  meant  by  "  combination  tones  ?" 
(b)  What  is  their  origin  ? 
(c)  What  are  the  frequencies  of  the  combination  tones  for  two  notes 

of  frequencies  256  and  384  ? 
Ans.  (a)  See  p.  135. 
{b)  See  p.  133. 

{e)  384-256=128. 
384+256=640- 

LONDON  UNIVERSITY. 

InTBRMEDIATE   Doc.  MUS.    ExAMI>fATION. 

1896.     Morning  10  to  1. 

1.  What  evidence  can  you  give  to  show  that  periodic  compressions 
and  rarefactions  are  occurring  in  the  air  in  the  neighbourhood  of  a 
sounding  body  V 

Ans. — Best  by  means  of  a  manometric  jet  (for  constuctiou  of  wliich 
see  fig.  55  left  hand  top  comer  and  accompanying  description)  and  a 
revolving  mirror  used  as  explained  on  p.  5. 

2.  How  does  the  pitch  of  the  note  given  out  by  a  stretched  string 
depend  (1)  on  the  length  of  the  string,  (2)  on  the  weight  of  unit  length 
of  the  string,  and  (3)  on  the  tension  of  the  string  ? 

Ans. — See  p.  87. 
3.  How  could  you  analyse  a  complex  sound  so  as  to  determine 

whether  a  note  of  any  particular  pitch  was  present  ? 

Ans. — See  p.  65. 
4.  Explain  the  method  of  production  of  beats,  illustrating  your 

answer  by  carefully-drawn  figures.  What  effect  is  produced  when  two 
sounds  of  nearly  equal  periods,  but  of  somewhat  different  amplitudes, 
are  sounded  together  ? 

An f.— See  pp.  144,  145,  and  146. 
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5.     Give  a  brief  summary  of  the  various  theories  which  have  been 
put  forward  to  explain  a  consonance  and  a  dissonance. 
^«*.— See  p.  172, 

Aftbrnoon.     2  to  5. 

1.  (a)  Using  a  graphic  representation  of  sound-waves  in  air,  point  out 
what,  in  your  representation,  determine  respectively  the  pitch,  loudness, 
and  the  quality  of  the  sound  ? 

(b)  State  very  briefly  the  evidence  for  your  statement. 
Ans.  {a)  See  pp.  19  and  22. 
(b)  Pitch  varies  with  vibration  rate.     Proved  by  Syren,  &c. 

Wave-length=: Velocity  divided  by  vibration  rate  (see  p.  39) ; 
Therefore  pitch  depends  upon  length  of  sound-wave. 
Loudness  depends  upon  amplitude.     See  p.  52. 
Quality  depends  upon  form.     See  p.  80. 
2.  If  you  stand  near  equally  spaced  palisading,  with  vertical  stakes 

a  few  inches  apart,  and  sharply  clap  your  hands,  there  is  an  echo  with 
a  musical  tone.  Explain  this,  and  show  how  the  tone  may  be 
determined  from  the  velocity  of  sound  and  the  distance  between  the 
stakes. 

Ana. — The  sound  will  be  reflected  back  by  each  of  the  stakes. 
Suppose,  for  simplicity,  you  are  close  to  one  of  the  stakes  and  that  the 

clap  caused  one  sound-wave  only  ;  part  of  this  sound-wave  striking 
the  next  stake  is  reflected  back  to  your  ear ;  another  part  travels  to 
next  state,  is  reflected  and  reaches  your  ear  in  its  turn,  and  so  on.  The 

length  of  this  sound-wave  therefore  is  twice  the  distance  between  the 
stakes,  and  thus  the  vibration  number  of  the  tone  produced  is  found 
by  dividing  the  velocity  of  sound  by  twice  this  distance. 

3.  (a)  How  may  the  velocity  of  Found  in  a  pipe,  closed  at  one  end  by  a 
movable  piston,  be  determined  by  resonance  to  a  fork  of  known 
frequency  ? 

(b)  Give  the  theory  of  the  experiment,  and  a  general  explanation  of 
the  need  for  the  end  correction  ? 

(c)  How  may  the  experiment  be  conducted  so  as  to  eliminate  the  end 
correction  ? 

Ans    (a)  Seep.  119. 
{b)  See  p.  61  and  62. 
The  reflection  from  the  open  end  does  not  take  place  exactly  at  the 

end,  but  at  a  distance  from  it  of  about  ̂   of  the  radius  of  the  tube ; 
this  is  called  the  end  correction. 

(<?)  Ascertain  the  position  of  the  upper  node  in  B  fig.  56  (see  p.  103). 
Measure  distance  of  this  node  from  closed  end  and  multiply  this  by 

f  X  4  to  obtain  the  wave-length. 
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4.  Describe  a  stroboscopic  method  of  determining  the  frequency  of  a 
fork. 

Ans.—See  pp.  37  and  38. 
5.  What  are  Combination  Tones  ?  Explain  how  they  are  probably 

produced  in  the  ear  when  they  have  no  external  existence.  In  what 
case  have  they  been  shown  to  exist  externally,  and  how  ? 

Ans.—^.  134. 
The  rest  of  this  question  is  still  under  discussion.  For  a  full  account 

of  the  matter,  the  student  is  referred  to  Helmholtz'  "  Sensations  of 
Tone,"  2nd  English  Edition,  pp.  152,  and  156  to  159. 

Also  Appendix  XX,  Section  L. 

TONIC   SOL-FA    COLLEGE. 
First  Stage.     1896. 

1.  (a)  Explain  clearly  what  you  underetaud  by  a  sound-wave  ? 
[b)  In  what  respects  may  sound-waves  differ  ? 
(c)  What  difference  in  the  sound  results  from  these  differences  in  the 

wave? 

{d)  What  is  the  length  of  the  sound-waves  given  off  from  an  ordinary 
tuning-fork  ? 

(e)  Why  are  the  sound-waves  from  the  same  fork  not  always  of  the 
same  length  ? 

Ans.  {a)  See  pp.  17  and  18. 
(b)  Length,  amplitude,  and  form. 
(c)  Pitch,  intensity,  and  quality. 

{d)  1100    ̂   517  =  2  ft.  2  in.  nearly. 
{e)  Because  of  temperature. 

2.  (a)  If  a  etretched  string  sounds  the  note  Ci,  what  note  will  ̂   of 
the  same  string  give  ? 

{b)  If  a  certain  string  stretched  by  a  weight  of  25  lbs.  gives  0,  what 
note  will  the  eame  string  give  when  stretched  by  a  weight  of  9  lbs. 

Ans.  (fl)  E'. 
(b)  ̂ b.- 

3.  (a)  Explain  and  illustrate  the  terms  "node,*'  and  "ventral 
segment  "  as  applied  both  to  striogw  and  pipes. 

{b)  A  closed  organ  pipe,  2ft.  2 ins.  long  is  sounding  G  in  treble  staff. 
Oive  a  sketch  showing  position  of  its  nodes. 

Ana.  (a)  See  pp.  96  and  102.  Also,  nodes  in  pipes  are  situated  where 
the  changes  in  density  are  greatest. 

(b)  See  p.  106,  fig.  56  B. 
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4.  On  keyboard  instruments,  four  minor  thirds  are  taken  as  equal 
to  an  octave,  (a)  Is  this  correct  ?  {b)  If  not,  state  as  a  vibration  ratio 
the  interval  by  virhich  one  exceeds  the  other,  and  show  clearly  which  is 
the  greater. 

Ans.   (a)  No. 

W  |xfxfxf='5V¥ 
2  —  J  «AP 
f     ^4  5 

therefore  the  former  is  the  greater  by  the  interval  ||f f  =  ̂ ^^ 

5.  (a)  State  precisely  what  you  understand  by  **  Simple  Tone," 
"Compound  Tone,"  "Partial,"  "Overtone,"  and  "Fundamental," 
and 

(Aj  Explain  how  you  would  demonstrate  to  anyone  the  existence  of 
each. 

Ans.  {a]  See  Summary,  pp.  83  and  84. 
{b)  Simple  Tone.     See  p.  84. 

Compound  Tones  are  obtained  from  any  ordinary  musical  instrument. 
Partials,  overtones,  and  fundamentals  may  eaaily  be  discriminated  by 
resonators  (see  pp.  69  and  70.) 

6.  (a)  Explain  clearly  and  illustrate  what  is  meant  by  resonance. 

(b)  What  are  the  relations  between  the  length  of  an  air  column  and 
the  pitch  of  its  note  of  maximum  resonance  ? 

Ans.  (a)  See  pp.  67  and  62,  or  63  or  64. 

(A)  The  length  of  air  column  must  be  ̂   or  J  the  wave-length  (that  is 

1100  -7-  vibration  number)  according  as  the  air  column  is  in  an  open  or 
stiJpped  tube. 

Second  Stage. 

1.  Wherabouts  are  the  hammers  made  to  strike  the  middle  strings 
of  a  pianoforte  ?    Why  is  this  ? 

Ans  —See  p.  95. 

2.  Show  clearly  why  i-g  is  a  dissonant  interval,  and  ii  a  consonant 
interval. 

Ans. — See  p.  168  for  former  and  pp.  188  and  191  for  latter,  which  is 
a  major  third. 

3.  Show  clearly  how  it  comes  about  that  the  major  third  is  too  sharp 
in  equal  temperament. 

^«».— See  p.  240. 

4.  Explain  as  fully  as  you  can  why  a  primary  dissonance  is  worse 
than  a  secondary,  and  a  secondary  worse  than  a  tertiary. 



EXAMINATION  PAPERS,  283 

Ans. — See  pp.  165  and  16S  and  figured. 

5.  (a)  Explain  clearly  what  is  meant  by  interference  of  sound-waves. 

What  is  meant  by  "  phase  ?  " 
(b)  Describe  in  detail  how  it  is  that  the  sound-waves  that  issue  from 

a  tuning-fork  are  alternately  in  opposite  phase. 
Ans.  (a)  See  pp.  136,  137,  with  figs.  67  and  68. 
{b)  See  pp.  141  and  142,  with  fig.  74. 

6.  Compare  by  neat  diagrams  and  explanations  the  intervals  of  a 
minor  third  and  minor  tenth  in  respect  to  their  harmoniousness. 

Ans— See  pp.  188,  200,  and  201. 

CAMBRIDGE. 

Examination  for  the  Degree  of  Mus  Bac,  Part  /,  and  special  examination 
in  Music  for  the  Ordinary  B.A.  Degree. 

Tuesday,  May  23,  1899.     9  to  12. 

Acoustics. 

1.  A  tuning-fork  is  set  into  vibration.  Describe  fully  the  motion 
of  a  particle  on  one  of  the  prongs,  and  the  way  in  which  sound  from 
the  fork  reaches  the  ear  of  an  observer. 

Ans.—S^e  p.  18,  with  fig.  14. 
2.  Upon  what  physical  characteristics  of  the  vibrations  of  a  body 

do  the  loudness  and  pitch  of  the  note  emitted  depend  ?  What  experi- 
ments can  you  adduce  in  support  of  your  statements  ? 

Ans. — Loudness  depends  iipon  amplitude,  and  pitch  upon  vibratior 
number  (see  pp.  29,  30,  et  seq.  for  pitch  and  p.  32  for  loudness). 

3.  (o)  Describe  some  form  of  resonator,  and  explain  how  resonator e 
can  be  applied  to  the  analysis  of  compound  sounds. 

(J)  A  note  on  a  pianoforte  is  struck  staccato — (1)  when  the  octave 
above  is  held  down  ;  (2)  when  the  octave  below  is  held  down.  Describe 
and  explain  what  is  heard  in  each  case. 

Ans.— {a)  See  pp.  65,  66,  and  67  wi^h  figs.  37  and  38.     See  also  p.  7C. 
{b)  The  strings  of  the  octave  above  sound  by  resonance  with  the 

two  vibrating  halves  of  the  string  struck ;  (5  2)  the  two  halves  of  the 
strings  an  octave  below  sound  by  resonance  with  the  original  strings 
struck  (see  also  p.  70). 

4.  (o)  Describe  the  motion  of  the  air  in  an  open  organ-pipe  sounding 
its  fundamental  note. 
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{b}  Taking  the  velocity  of  sound  in  air  to  be  1100  ft.  per  second, 
find  the  approximate  length  of  an  open  pipe  giving  256  vibrations  per 
second.     In  what  respects  is  this  calculation  incomplete  ? 

Ans.—{a)  See  pp   102,  103,  104  with  fig.  54  (A). 
1100  550 

(*)  Approximate  length  ==  ̂   ̂   256  ̂ ^  256  =  2  f t.  2  ins.  nearly. 

In  this  calculation  it  is  assumed  that  the  reflection  of  the  sound-wave 

at  the  open  end  of  a  pipe  takes  place  exactly  at  the  end.    This  is  not 
the  case,  and  in  that  respect  the  calculation  is  incomplete. 

5.  (a)  Describe  and  explain  the  phenomena  of  beats. 
{b)  If  two  notes  a  semitone  apart  give  six  beats  per  second,  when 

sounded  together,  what  are  their  vibration-numbers  ? 

An$.—{a)  See  pp.  144,  145,  and  156  with  fig.  76. 
{b)  Let  X  denote  vibration  number  of  the  lower  tone,  then 

X  -\-  G  denotes  vibration  number  of  the  upper  tone, 

£_+_(>  _   16 X       ~  15 

and 

therefore      ̂   +  *  ̂ ^  •'^  "^  15 

therefore 

^  =  1 

z        15 

and  a;  =  90 

Thus  the  vibration  numbers  are  96  and  90. 

6.  (a)  What  are  combination  tones,  and  under  what  conditions  are 
they  audible  ? 

(J)  Explain  the  observation  that  with  mounted  tuning-forks  excited 
very  gently  there  is  but  slight  diesonance  in  an  impure  octave,  but 
that  if  the  forks  are  excited  vigorously  the  dissonance  becomes  marked. 

An8.—{a)  See  pp.  128  and  131. 
(b)  When  the  forks  are  vigorously  excited,  the  differential  combina- 

tion tone  beats  with  the  lower  fork,  but  when  very  gently  excited,  the 
probability  is  that  the  differential  is  not  produced. 

7.  Explain  Helmholtz's  theory  of  consonance  and  dissonance,  and 
employ  it  to  prove  that  a  fifth  is  a  more  consonant  interval  than  a 
fourth. 

Ans.-See  Chap.  XV  and  Chap.  XVI,  p.  191,  with  fig.  80. 
8.  Explain  how  the  need  for  tempered  intonation  in  the  case  of 

keyed  insbruments  arises,  and  desciibe  the  system  of  equal  tempera- 
ment. 

Ans.—See  pp.  226  to  233  and  pp.  238  to  241. 
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Tuesday;  May  22,  1900.     9  to  12. 

1.  (a)  Explain  the  mode  in  which  sound  is  transmitted  through  the  air. 
[b]  How  do  the  motions  of  the  particles  of  air  within  a  sounding 

organ -pipe  diifer  from  the  motions  of  the  particles  of  air  outside  the 
pipe  by  which  the  sound  is  transmitted  to  a  distance  ? 

Am.— {a)  See  pp.  16,  17,  and  18. 
{b)  See  pp.  102  and  104  with  JBg.  54  (A). 

2.  In  what  respect  does  a  musical  sound  differ  from  a  noise  ?  What 
is  the  evidence  in  support  of  your  statements  ? 

Ans.—^ee  p.  2. 

3  (a)  What  is  meant  by  resonance?  {b)  Explain  why  a  resonator 
lesponds  most  strongly  to  a  note  of  a  certain  definite  pitch. 

Ans. — {a)  See  p.  57. 
{b)  See  pp.  60  and  61. 

4.  (o)  What  are  the  relations  between  the  upper  partial  tones  of  a 
sounding  string  and  the  fundamental  tone  ? 

{b)  Draw  diagrams  illustrating  the  motion  of  a  string  which  is 
sounding  its  fundamental  and  second  upper  partial  simultaneously. 

Am.— {a)  Se^  p.  93. 
{b)  Let  a  b  c  d  ef  g  and  a  h  k  I  m  n  g  represent  two  positions  of  the 

ttring  at  some  given  instant,  the  former  as  if  the  fundamental  alone 
were  being  produced  and  the  latter  the  second  upper  partial  alone. 

1 — "r^aJL 
1____€^ 

^ 

^^- 

CL 

k^---^ 

___^^.^Trv
 

70 

Then  the  thicker  curve  will  represent  the  resultant  motion,  that  is  to 

say  one  position  of  the  string  when  the  two  are  produced  simultane- 
ously.   For  details  as  to  construction  see  p.  82. 

5.  Describe  the  mechanism  by  which  the  human  voice  produces 
musical  sounds,  and  explain  how  the  pitch  and  quality  of  these 
sounds  are  controlled. 

Am. — See  pp.  114  and  115. 
6.  [a)  Desciibe  and  explain  what  is  heard  when  two  notes  very 

nearly  in  unison  are  sounding  together. 

{b)  If  two  organ -pipes  in  exact  unison  be  sounded  at  opposite  ends 
of  a  large  room,  what  will  be  heard  by  a  man  who  walks  from  one  of 
the  pipes  to  the  other. 

Am.—  (a)  See  pp.  144,  145,  and  146. 
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{b)  As  the  man  walks  to  one  of  the  organ-pipes,  more  soimd-wavea 
per  sec.  from  that  pipe  will  enter  his  ear  than  if  he  were  at  rest, 
because  he  advances  to  meet  them.  On  the  other  hand,  fewer  sound- 

waves per  sec.  will  reach  his  ear  from  the  other  pipe.  One  pipe  will 
consequently  appear  sharper  than  the  other,  and  therefore  slow  beats 
will  be  heard. 

7.  {a)  Explain  the  formation  of  combination  tones. 
[b)  Why  is  it  that  in  the  case  of  some  instruments  these  tones  can  be 

reinforced  by  the  use  of  resonators,  while  in  other  cases  resonators  are 
of  no  assistance  ? 

An8.—{a)  See  pp.  133  and  134. 
{b)  When  the  same  mass  of  air  is  agitated  by  both  generators  as  in 

the  case  of  an  harmonium  bellows,  the  combiration  tone  has  an 
objective  existence  and  can  be  reinforced  by  resonators.  In  other 
cases  the  tones  are  subjective,  formed  in  the  ear,  and  cannot  be  thus 
reinforced. 

8.  (a)  Distinguish  between  exact  and  tempered  intonation,  and 
describe  the  system  of  equal  temperament. 

[b)  If  the  pitch  number  of  C  is  264,  what  will  be  that  of  A-(l)  in 
oxaot;    (2)  in  tempered  intonation. 
Ans—{a)  See  pp.  238  to  241. 

{b)      (1)  T    X  I  =  220 

264         /  12/  \3         264  */ 

(2)  —  -h  (  V2)    =  ̂   -^  V 2  = 
222 

UNIVERSITY    OF    LONDON. 

Intermediate  Examination  for  Degree  of  Bachelor  of  Music. 

Tuesday,  December  14,  1898.     10  to  1. 

1  {a)  Explain  why  the  interior  length  of  a  stopped  organ-pipe  ia 
approximately  equal  to  one  quarter  the  length  of  the  wave  of  sound 
which  it  limits. 

(A)  Why  is  it  not  precisely  equal  thereto  ? 

Ans.—{a)  See  pp.  61  and  62. 
{b)  See  answer  to  U  Mus.Bac.  (Cambridge)  Exam.,  1899. 

2.  In  what  way  is  the  pitch  of  an  organ-pipe  affected  by  changes 
in  the  temperature  and  in  the  humidity  of  the  air. 

Ant. — See  pp.  100  and  101.  The  greater  the  humidity  the  sharper 
the  pipe. 

3.  (a)  State  the  ratios  between  the  frequencies  {i.e.  vibration  number) 
of  any  fundamental  note  and  the  frequencies  of  the  seven  successive 
notes  of  its  major  scale  (untempered)  up  to  its  octave. 
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(5)  Given  that    ~7t~  is  tuned  to  have  a  irequency  of  263, 

find  the  frequency  of    ■^_      ~  of    i^ — & —    and  of    I^ZZQ — 

.%   '^ —  80  found,  calculate  those  of (<j)  From  frequency 

-i 

Ans. — (a)  See  p.  51. 
9        2367        „^^, 

(3)  D  =  263  X   8  =  -g-    =  295J 

3  789 

G  =  263  X  2  =    "2~   "^  ̂'"^^^ 
1315 

A  =  263   X  3  =  -3-  =  438^ 

9  7101  7101 

(.)  A  =  394i  X    8-  =  2"^  =  -16"  =  4431A 

D.  =  394,x|  =  ̂ ^^  =  ̂   =  591| 

4.  (a)  Explain  the  production  of  beats,  (i)  Suppose  a  set  of  forks 
to  be  tuned  to  philosophic  pitch  in  which  C  =  256 ;  and  that  a  fork 
mistuned  to  260  vibrations  per  second  is  procured.  How  many  beats 
per  second  wiU  the  mistuned  fork  make  (1)  when  sounded  only  with 

C  ̂   256  ;  (2)  when  sounded  with  |!  C  =  264 ;  and  (3)  when  sounded 
with  CI  =  512  ? 

Am.— {a)  See  pp.  144,  145,  146. 

(3)  (1)  260  —  256  =   4  beats  per  second. 
(2)  264  —  260  =   4  „     „ 
(3)  512  —  260  =  252  DifEerential. 

260  —  252  =  8  beats  per  second. 

5.  (a)  Enunciate  the  laws  which  govern  the  frequency  of  vibration 
of  a  stretched  string  ;  ip)  and  point  out  how  these  laws  come  in,  in  the 
construction,  tuning,  and  playing  a  violin. 

Ana.— (a)  See  p.  87. 
(*)  See  pp.  88,  89,  and  90. 
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Afternoon.     2  to  5. 

1.  What  explanation  can  you  ofEer  of  the  following  ? 
(a)  The  throbbing  sound  so  often  heard  when  the  tone  of  a  large 

bell  is  dying  away. 
(b)  The  circumstance  that  the  upper  partial  tones  of  church  bella 

do  not  even  approximately  follow  the  harmonic  series  1:2:3:4  &c. 

An8.—{a)  and  {b)  See  pp.  125  and  126. 

2.  {a)  Briefly  state  Helmholtz's  Theory  of  Consonance.     (J)  It  in 

found  that  if  two  notes    "^^      iz    are  played  simultaneously  upon 

an  open  and  a  stopped  pipe,  the  interval  sounds  harsher,  if  the  lower 
note  is  taken  by  a  stopped  pipe  while  the  upper  note  is  played  upon 
an  open  pipe,  than  is  the  case  if  the  upper  is  played  upon  a  stopped 
pipe  and  the  lower  upon  an  open  pipe.    Explain  this. 

Ans.—{a)  See  Chapter  XV. 
(*)  See  p.  198  with  fig.  82,  last  interval. 
3.  Sketch  the  wave  forms  for  a  note,  for  its  octave,  and  for  thii 

note  that  is  a  fifth  above  its  octave,  assuming  that  each  is  of  equal 
loudness  ;  also  show  how  to  find  the  complex  wave  form  of  the  sound 
produced  by  all  these  three  notes  sounding  together  as  a  chord. 

Ans.—Bee  pp.  82  with  fig.  45. 
4.  What  is  the  effect  on  the  apparent  pitch  of  a  note  under  tho 

following  various  circumstances  : — (a)  when  the  instrument  which 
sounds  the  note  is  moving  rapidly  (as  wht  n  the  performer  is  carried  on 
board  a  railway  train)  towards  the  observer ;  {b)  when  a  wind  is  blowing 
towards  the  observer  from  the  place  where  the  instrument  is  situated ; 
(c)  when  the  observer  is  moving  rapidly  (say,  on  board  a  train)  towards 
the  place  where  the  instrument  is  situated. 

An8.—{a)  The  note  is  apparently  sharpened  in  all  three  cases. 

Tuesday,  December  13th,  1899.    Morning,  10  to  1. 

1.  (a)  What  change  does  a  rise  of  temperature  produce  upon  tho 

velocity  of  sound  in  air?  (b)  Suppose  an  organ-pipe  to  be  in  tune 
when  blown  with  air  at  the  freezing  point,  how  much  will  its  pitch  rise 
when  blown  with  air  at  80T  ?  (c)  Why  do  not  stringed  instruments 
change  in  pitch  to  the  same  extent. 

An8.—  {a)  It  increases  the  velocity  :  See  p,  20  and  p.  100. 

(i)  80^F  =  (80  -  32)  5  c°  =  48  X  ̂  =  ̂   =  26§°C 

Therefore  if  v  denotes  velocity  of  pound  at  0°C 

y 
i  +   3-  X  —    will  be  the  velocity  at  80^F  (see  p.  100). 
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yi+'' 

Therefore      vib.  No.  at  80"  F    __     ̂     "  ̂   819    _        /  899 
vib.  JSo.  at  32^  F  1  V      819 

2998        150 

=  2862  =  143  ̂ ^^y  ̂ '*"^5^- 

That  is,  pitch  will  rise  about  7  vibrations  in  143,  or  about  1  in  20. 

More  simply,  SO''  F  is  80=*  —  32  =  48"  above  freezing  point.    Therefore 
if  velocity  of  sound  at  0°  is  1090  above  velocity  at  48°  F  will  be  nearly 
1090  +  48  =  1138. 

^,      ,  vib.  No.  at  80"^  F        1138        114 
Therefore      vib.  j^o.  at  32°  F  =  1090  =  109  ̂ ^^'^y* 

That  is,  a  rise  of  about  5  in  109,  or  about  1  in  20  as  before. 

(c)  Because  strings  whether  of  catgut  or  metal  do  not  expand 
anything  like  so  much  as  air  for  the  same  increase  of  temperature,  but 
see  p.  90. 

2.  Explain  how  it  is  that  a  sound  can  be  reflected  back  from  the 
open  end  of  a  tube.  Explain  the  difference  between  this  and  the 
reflection  taking  place  at  a  closed  end  of  a  tube. 

yfn».— Seepp.  60  and  61. 

3.  (o)  What  are  Lissajous'  figures  ?  (b)  How  are  they  produced  ? 
(<?)  What  do  they  demonstrate  ? 

Ans. — (a)  Lissajous'  figures  are  the  figures  described  by  a  particle 
which  is  simultaneously  vibrating  in  two  directions,  say  at  right  angles 
to  one  another ;  or  we  may  say,  they  are  the  figures  obtained  by 
optically  combining  the  motions  of  two  particles  vibrating  in  directions 
at  right  angles  to  one  another. 

(b)  There  are  various  methods  of  producing  them  :  one  of  the 
simplest  is  by  means  of  such  a  compound  pendulum  as  is  figured  in 
fig.  42.  Fasten  the  lower  end  of  this  at  one  comer  of  the  board  with 
a  piece  of  thread,  load  the  funnel  with  sand  and  then  release  by 
burning  the  thread.  The  pendulum  will  then  vibrate  as  a  whole  across 

the  board  in  a  direction  parallel  to  a  J— but  the  lower  part  will  also 
vibrate  in  a  direction  at  right  angles  to  this  parallel  to  A'  A,  and  the 

result  will  be  a  Lissajous'  figure  in  sand  on  the  board  below,  which 
remains  at  rest. 

((?)  They  demonstrate  the  exact  proportion  or  otherwise  between  the 
two  vibration  periods. 

4.  If  mixed  sand  and  lycopodium  powder  are  scattered  over  a 
square  brass  plate  clamped  at  its  centre,  and  the  plate  is  so  bowed  at 
its  edge  as  to  emit  a  shrill  note,  the  sand  is  observed  to  settle  down 
in  lines,  and  the  lycopodium  in  small  patches.  Explain  the  significance 
of  these  facts. 

u 
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Am. — See  pp.  124  aad  125.  The  lycopodium  powder  being  so  light 
is  entangled  by  the  little  whirlwinds  of  air  produced  by  the  vibrations 
of  the  plate  ;  it  cannot  escape  from  these  tiny  whirlwinds,  but  the 
heavier  sand  particles  are  readily  driven  through  them. 
5.  Find  the  form  of  the  sand  figures  produced  on  a  square  plate  so 

bowed  that  iks  vibrations,  so  far  as  they  are  parallel  to  one  edge  are 
taking  place  with  two  nodal  lines,  and  also  with  two  nodal  lines,  so  far 
as  they  are  taking  place  parallel  to  the  other  edge.  Sketch  and  explain 
the  eand  figures  when  («)  the  comers  are  in  the  same  and  {h)  when  they 
are  in  opposite  phases  of  vibration  due  to  these  two  components. 

Ans. — Let  fig.  A  represent  the  plate  as  if  vibrating  parallel  to  one 
edge  only,  and  at  the  moment  when  the  middle  rectangle  is  above  the 
horizontal  (denoted  by  a)  and  the  lateral  rectangles  below  (denoted  by 
b),  the  two  lines  representing  the  nodal  Unes.     Let  fig.  B  represent  the 

I-      j              CI, 
^ 

A, 

D.  E 
same  plate,  as  if  vibrating  parallel  to  the  other  edge  only,  and  at  the 
moment  when  the  inner  rectangle  is  above  and  the  outer  rectangles 
below  the  horizontal  lines  (denoted  by  a  and  b  as  before).  Now  let  0 
represent  A  and  B  superposed.  On  examination  it  is  seen  that  the 
centre  square  marked  a  will  have  a  double  amplitude  above  and  the 
comers  b  a  double  amplitude  below  the  horizontal.    Also  the  points 
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marked  1  will  be  points  of  rest,  since  they  are  on  both  sets  of  nodal 
lines.  The  points  2  also  are  nodal  points,  for  they  have  equal  ampli- 

tudes in  opposite  directions.  A  little  consideration  will  show  also  that 
the  lines  2.  1,  2  connecting  these  points  of  rest  will  be  nodal  lines. 
Hence  the  sand  figure  will  be  the  square  2,  2,  2,  2.  It  can  be  obtained 
by  clampiDg  the  plate  at  2  and  bowing  close  to  one  of  the  corners. 
Now  [b)  let  fig.  D  represent  the  plate  B,  but  vibrating  in  opposite  phase 
as  shown.  Let  E  represent  D  superposed  on  A.  Then  the  rectangles 
a  a  b  b  will  have  twice  the  amplitude  due  to  each  set  of  vibrations 
singly.  The  points  1,  1,  1,  1  are  of  course  nodal  points:  the  four 
corners  3,  3,  3,  3  and  the  centre  0  are  also  nodal  points,  since  they  have 
equal  and  opposite  amplitudes.  Consequently  the  sand  figure  will  be 
the  cross  along  the  diagonals  3,  0,  3.  It  can  be  obtained  by  clamping 
the  plate  at  the  centre  and  bowing  near  the  middle  of  one  of  the  sides. 

6.  (a)  What  is  a  good  form  for  a  resonator  ?  Explain  [b)  why  a  well- 
made  resonator  is  not  set  into  active  vibration,  even  by  a  loud  tone, 
unless  the  tone  is  accurately  of  the  pitch  to  which  the  lesonator  is 
tuned  ;  (c)  in  what  way  resonators  provide  a  means  for  the  analysis  of 
compound  sounds. 

Ans.—ia)  See  p.  65.  (b)  See  pp.  60,  61,  and  62.  (c)  See  pp.  6e  and 
69. 

Afternoon.     2  to  5. 

1.  Describe  the  structures  of  the  inner  ear,  and  explain  how  they 
aid  in  the  perception  of  pitch,  the  quality,  and  the  direction  of  sounds. 

^««.— See  pp.  25,  26,  27,  28. 

2.  What  is  the  reason  why  the  ear  is  more  sensitive  to  slight  varia- 
tions of  pitch  in  moderately  high  than  in  low  notes. 

Am. — In  the  Cochlea  (see  pp.  27  and  28j  the  radial  fibres  are 
probably  tuned  with  fair  regularity,  like  the  forks  of  a  Tonometer 
{see  p.  151).  Suppose  for  the  sake  of  explanation  they  are  tuned  at 
say  about  2  vibrations  difEerence  between  successive  fibres.  In  that 
case  the  ear  would  be  able  to  detect  difference  of  vibration  number 

with  equal  keenness  in  all  parts  of  the  scale.  But  two  vibrations  at 
low  pitch  means  a  much  larger  interval  than  at  high  pitch.  For 
example,  2  vibrations  difference  at  d  =  30  would  mean  a  semitone, 
while  2  vibrations  above  d  =  300  would  mean  only  a  small  fraction  of 
a  semitone.  Thus  the  ear  would  be  much  more  sensitive  to  difference 

of  pitch  at  the  latter  pitch  than  at  the  former. 

3.  In  arithmetic,  a  fourth  and  a  fifth  added  together  do  not  make 

an  eighth;  yet  in  music  a  "fourth"  and  a  ** fifth"  added  together 
make  an  "octave."  Also  in  music  a  major  "third"  and  a  "fourth  " 
added  together  make  a  sixth  ;  yet  in  arithmetic  neither  do  three  and 
four  make  six,  nor  do  a  third  and  a  fourth  added  together  make  a 
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Bixth.     Explain  the  peculiarity  of  musical  nomenclature  which  has 
given  rise  to  these  anomalies. 

Ant. — A  fourth  in  music  does  not  mean  a  fourth  part  of  anything 
as  in  arithmetic,  but  merely  the  fourth  note  from  that  with  which  we 
start  in  the  diatonic  scale. 

i 4.  (a)  If  the  note    i^zz^zz    on  a  pianoforte  be  silently  depressed 

and  held  down,  and  the  note    i^,        Jii    be  struck  vigorously  and 

allowed  to  rise  again,  what  note  will  then  be  heard  ?    {b)  If  the  notes 
IQZZ 

are  similarly  held  down  silently,  while  the  notes 

are  vigorously  struck,  which  of  the  upper  notes  will  be  heard  sounding 
after  the  two  lower  notes  have  been  released. 

HE 
An,.-^{a)    SE^-  (*)    ̂ = 
5.  (a)  Explain  the  nature  of  the  "beats"  heard  in  a  mistuned 

interval  such  as  a  mistuned  octave  or  twelfth.  It  has  been  stated  that 

it  is  easier  to  tune  a  major  third  (by  altering  the  pitch  of  the  upper  of 
the  two  notes)  if  there  is  sounding  at  the  same  time  the  fifth.     For 

example,  to  tune    "m         ~     by  comparison  with 

easier  if    -^     q   -    is  also  present.    Can  you  give  a  physical  reason 
for  this? 

An8.—{a)  See  p.  176. 

(*)  The  0  and  G  would  produce  a  Summation  Tone  E'  and  the  E 
must  be  tuned  so  that  its  first  over-tone  is  in  unison  with  this  E' ;  also 
the  Differentials  produced  by  the  E  and  G  and  by  the  E  and  C  would 
be  identical. 

6.  Give  some  account  of  the  rise  of  pitch  since  the  time  of  Handel. 
What  are  the  causes  tending  to  force  up  the  pitch? 

Ans. — See  p.  42. 

Tuesday,  December  19bh,  1899.     10  to  1. 

1.  Why  is  the  tuning-fork  rather  than  any  other  simple  musical 
instrument  selected  as  a  standard  of  pitch?  Does  the  pitch  of  a 
tuning-fork  alter  with  temperature,  time,  or  climate  ? 
Am.— See  V  ̂23. 
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2.  A  steel  rod  (such  as  the  prong  of  a  long  tuning-fork)  is  free  to 
vibrate  at  one  end  and  is  fixed  at  the  other.  Where  will  the  nodes  be 

situated  in  the  first  and  in  the  second  of  its  higher  partial  nodes  of 

-vibration,  and  what  will  be  approximately  the  relative  pitches  of  those 
higher  tones  compared  with  the  fundamental  P 

Ans. — For  1st  overtone  the  node  will  be  about  a  fourth  or  a  fifth  of 
its  length  from  the  free  end.  For  2nd  overtone  the  one  node  will  be 
nearer  than  this  to  the  free  end,  while  the  other  will  bisect  the  length 
between  this  node  and  the  fixed  end.  The  relative  pitches  of  the 
fundamental,  and  1st  and  2nd  overtones  will  be  approximately  as 
4  :  25  :  70. 

3.  Many  organists  will  tell  you  that  when  the  room  where  the 

organ  is  gets  hot,  the  reeds  in  the  trumpet  stop  and  other  reed-pipes 

**get  flat"  in  tone.  Is  this  allegation  true?  Explain  the  facts  that 
have  originated  this  idea. 

^««.— Eeeds  do  slightly  flatten  with  rise  of  temperature  (see  p.  Ill), 
but  the  other  pipes  of  the  organ,  the  flue-pipes,  sharpen  much  more 
rapidly  with  increase  of  temperature,  so  that  the  reeds  seem  to  flatten 
by  contrast. 
4.  Describe  a  method  of  analysing  a  complex  tone  and  of  discover- 

ing its  constituent  tones. 

^««.— Seepp.  69,  70,  71. 
5.  Violinists  in  order  to  produce  the  effect  of  tremolo  upon  an  open 

string  resort  to  the  following  method  :  The  open  string  alone  is  bowed 
whilst  a  tremolo  fingering  is  performed  upon  the  next  higher  string  at 
the  point  corresponding  to  the  octave  above  the  note  of  the  open 
etring.  Give  physical  explanations  to  account  for  the  effect  being  the 
same  as  though  the  tremolo  had  been  executed  on  the  bowed  string. 

Ans. — The  open  string  when  bowed  vibrates  not  only  as  a  whole  but 
also  in  halves,  producing  the  upper  octave  ;  this  sets  the  string  above 
vibrating  by  resonace  and  as  this  is  subjected  to  the  tremolo  fingering, 
a  tremolo  effect  is  produced,  and  this  in  its  turn  reacts  upon  the  open 
string. 

6.  {a)  Why  are  dampers  always  provided  in  a  pianoforte  ?  {b)  What 
is  the  evidence  for  the  existence  of  damping  in  the  mechanism  of  the 
ear. 

Ans, — {a)  Dampers  are  provided  :  (1)  to  silence  a  string  after  it  has 
been  struck,  and  (2)  to  prevent  other  strings  sounding  by  resonance. 

(i)  The  shake  in  music  (say  10  tones  to  a  second)  can  be  clearly 
heard  throughout  the  greater  part  of  the  musical  scale,  but  as  we  get 
very  low  in  pitch,  they  sound  bad  and  rough,  and  their  tones  begin  to 
mix.  This  is  not  due  to  the  instrument  producing  the  tones,  for  they 
are  so  on  all  instruments.  It  is  consequently  due  to  the  ear,  that  is 
the  damping  in  the  ear  is  not  so  rapid  and  complete  for  the  lower  tones 
as  for  those  above. 
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Mus.Bac,  Edinbupg-h,  1898. 
Two  Hours. 

1.  Write  the  first  16  Partial  Tones,  taking  as  the  fundamental  Ej?, 
and  indicate  those  notes  which  do  not  agree  with  the  actual  sounds, 
saying  whether  these  latter  are  sharper  or  flatter. 

*  ft* 

Am.--E\^,  Eb',  Bb',  W,  G2,  Bb«,  Db^  Eb^,  F^,  G\  Ab,  Bb^  B,  DbS 
DSEb*.    Seep.  72. 

[The  note«  marked  *  are  flatter  than  indicated,  those  marked  +  sharper.] 

2.  Define  the  expressions  Partials,  Upper  Partials,  Overtones,  and 
Harmonics. 

^«s.— See  pp.  84,  71.  Upper  Partials  are  all  the  partials  above  the 
Fundamental.     See  also  p.  267,  No.  4. 

3.  If  the  tone  c"  is  produced  by  528  vibrations,  by  how  many 
vibrations  are  produced  the  tones  C  g"  and  d". 

Ans.—C  =  c"  -f-  8  =  528  —  8  =  66. 

g"  =  c"  X  I  =:  528  X  I  —  264  X  3  =  792. 
9  9 

d"  rz:  c"  X  g  =  528  X   g  =  66  X  9  =  591. 
See  Chapter  V. 

4.  What  are  the  ratios  of  a  major  third,  a  minor  third,  and  a  major 
sixth? 

Ans. — See  p.  51. 
5.  What  causes  the  difference  in  the  quality  of  tone  of  different 

instruments  ;  for  instance,  th  -  flute,  the  clarinet,  and  the  violin. 
^««.— See  pp.  96,  109,  113. 
6.  How  do  you  explain  the  fact  that  the  quality  of  tone  of  a  piano- 

forte is  changed  by  changing  the  place  where  the  strings  are  struck  by 
the  hammers  ? 

^na.— See  pp.  94  and  95. 
7.  Define  the  terms  Difference  Tones  and  Summation  Tones. 

Ans.— See  p.  135. 
8.  What  Difference  Tones  are  produced  by  the  following  couples  of 

tones  :— d'  —  a'  ;    c*|;  —  a'  ;    e'  —  g^jj^  ? 
Ana.— l6t,  d,  nearly. 

2nd,  e. 
3rd,  E. 

See  p.  130. 
9.  What  Summation  Tones  are  produced  by  the  same  couples  of 

tones? 
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Ans. — Ist,    i'% 
2ad,  fit.    Approximately. 

3rd,  f"| 
See  p.  134. 
10.  How  arise  Beats  ? 

Am.~^Q&  pp.  144,  145,  146. 
11.  [a)  What  is  the  nature  and  object  of  Equal  Temperament? 

{b)  Are  there  other  Temperaments  ?    {c)  And  what  is  tempered  ? 

Ana.— {a)  See  p.  238,  «&c. 
(*)  See  p.  233. 
{c)  See  p.  232. 

Mus.Bac,  Edinbupg^h,  1899. 
1.  state  what  you  know  about  the  velocity  of  sound  in  air  and 

other  media. 

Ans.—  ̂ ee  pp.  20  and  21. 
2.  What  are  the  respective  causes  of  Noise  and  Tone  ? 

^«s.— See  p.  2. 
3.  Explain  what  is  meant  by  the  words  Length,  Amplitude,  and 

Form  in  connection  with  sound-waves. 

Ans.—^ee  p.  22. 
4.  Name  the  6th,  8th,  and  10th  Upper  Partials  of  the  tone  A[j. 

Am. — (6th)  Approximately  Gb,  a  little  flatter. 
(8th)  Bb- 

(lOtfc)  Approximately  Db,  somewhat  sharper. 
See  p.  72. 
5.  {a)  Which  is  the  interval  above  or  below  a  tone  that  blends  with 

it  most  readily  ;  {b)  and  which  is  the  interval  that  comes  next  in  this 
respect  ? 
Ans.— {a)  Octave  ;  {b)  twelfth. 
6.  If  the  tone  C"  is  produced  by  528  vibrations,  by  how  many 

vibrations  are  produced  the  tones  of  C"",  G,  a'  and  b  flat? 
^n«.— C""  ==  528  X  2  X  2  =  2112. 

G      =  528  X  I  X  I  =  66  X  3  =  198. 

ai       =  528  X  ̂  =  88  X  5  =  440. 6 

8 
9^2""     9 
8        1         2112 

b  flat  =  528  X  o  X  t,  —  -q-  =  234f 

See  Chapter  V. 

7.  What  is  Helmholtz's  Theory  of  Beats  ? 
Ans.—^Qe  p.  144,  145,  146. 
8.  How  many  kinds  of  Combinational  Tones  are  there?    What 

are  their  names  ?    Give  some  examples  of  them. 
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Am.—^&e  p.  135,  and  pp.  130  and  134. 
9.  What  are  Tartini's  Tones  ? 
^n».— See  p.  129. 
10.  How  has  difference  in  the  quality  of  the  tone  (tone  colour}  been 

accounted  for  P 

^««.— See  p.  74. 
11.  Explain  the  cause  of  the  efEect  produced  by  the  use  of  what  is 

popularly  called  the  "  loud  pedal  "  of  the  pianoforte. 
Am, — See  p.  95. 

Mus.B.,  Victopia  Univepsity. 
Three  Hours. 

1.  Describe  two  different  methods  by  which  the  velocity  of  sound 
has  been  determined. 

^«*.-For  one  method  see  p.  19.  For  another  method:  Stand 
opposite  a  wall  which  gives  back  an  echo.  Clap  the  hands  at  such  a 
rate  that  the  sounds  and  their  echoes  occur  at  equal  intervals  of  time. 
Count  the  number  of  claps  and  echoes  in  (say)  2  minutes.  Measure 
the  distance  of  the  observer  from  the  wall.  This  distance  multiplied 
by  the  number  of  claps  and  divided  by  60  will  give  the  velocity  of 
sound. 

2.  Taking  the  co-efficient  of  expansion  of  air  to  be  ̂ 3-,  and  the 

velocity  of  sound  in  air  at  0°  C  to  be  33200  cm.  per  second  find  its 
velocity  at  20°  C  and  100°  C. 

^««.— Velocity  at  20°  C  =  33200  -v/ ̂    ,    . 

=  33200  -/  (II) 
=  34395 

Velocity  at  100°     =  33200 
=  38807 

20 

273 

v/37_3 

273 

3.  Describe  the  construction  of  the  siren,  and  show  how  it  is  used 
to  find  the  vibration  number  of  a  given  note. 

Ana. — See  pp.  31  and  32. 
4.  Show  that  the  addition  of  a  fifth  to  a  fourth  gives  an  octave. 

3        4        2 
Ans.-        ^  X  3  =  1 

5.  What  ought  the  stretching  weight  of  a  wire  to  be  to  give  a  note 
one-fifth  above  that  of  another  wire  of  the  same  thickness  and  material, 
one  metre  long,  and  stretched  by  a  weight  of  10  kilogrammes  ? 
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Ans. — Let  x  represent  the  weight  required. 

/   a;         3  a;         9 
V     in  =  o Then  v     jo~2    **'    i0~4    therefore  x  =  22|    kilos. 

6.  An  open  organ  pipe  being  20  ft.  long,  find  the  wave-lengths,  and 
the  vibration  numbers  of  its  fundamental  note  and  its  first  two  over- 

tones {v  =  1100  ft.  per  second). 

^«*.— Wave-lengths  are  40,  20,  13^  ft. 
Vibration  numbers  are  27^,  55,  82^  ft. 

Pee  pp.  39  and  99. 

7.  What  are  the  Diatonic  and  the  Chromatic  Semitones,  and  theii 
vibration  numbers  ? 

Ans.— See  pp.  48  and  49. 
8.  A  note  of  226  vibrations  per  second  and  another  of  340  are 

sounded  together,  each  being  accompanied  by  its  first  two  over-tones. 
Show  that  two  of  the  over-tones  will  give  two  beats  per  second. 

-4«».— Second  over-tone  of  the  first   =  226  X  3  =:  678. 
First  over-tone  of  the  second  =  340  X  2  =  680. 

Difeerence  =  2. 

Royal  University  of  Ireland,  1898. 
1.  Describe  a  sound  wave  iu  air. 

^«*.— See  pp.  16,  17,  and  18. 
2.  How  may  the  pitch  of  a  musical  note  be  found  by  experiment. 

Am.— See  pp.  31,  32  ;  35,  36,  37,  or  151  and  152. 
3.  A  stretched  string  gives  the  note  doh.  How  must  its  tension  be 

altered  so  that  the  note  emitted  may  be  sol  ? 

Ans. — The  tension  must  be  increased  2^  times.     See  p.  87. 
4.  Describe  the  condition  of  the  air  in  an  open  organ-pipe  when 

bounding  its  ttrst  overtone. 

^««.-See  p.  105  with  fig.  54  (B). 
5.  Why  do  sounds  travel  faster  in  water  than  in  air  ? 

Ans. — Because  the  elasticity  of  water  in  proportion  to  its  density  is 
greater  thaa  the  elasticity  of  air  in  proportion  to  the  density  of  air. 
See  p.  20. 
6.  Give  some  account  of  the  physical  basis  of  harmony.  See 

Chapter  XVI. 
7.  What  interval  added  to  a  Major  third  will  make  an  Octave? 

5        8        2 
Ans. — ^A  Minor  Sixth :  for    j  X  r  =  T 

See  Chapter  V. 

8.  Describe  Helmholtz's  Double  Siren. 
^««.— See  p.  34  with  fig.  22. 
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Royal  University  of  Ireland,  1899. 
1.  Explain  the  terms  Fifeh  and  Timbre,  giving  illustrations.  See 

p.  29.     For  Timbre  or  Quality  fee  p.  74. 

2.  Find  the  vibration  freqaency  of  a  note  whose  wave-length  in  air 
at  20°  C  is  2  ft. 

^««.— Velocity  of  sound  ia  air  at   20®   C  is  1090  +  20  =  1110, 

therefore  vib.  frequency  =    ̂ —  =r  555 

3.  How  may  the  interference  of  sound-waves  be  illustrated  by 
means  of  a  tuning  fork  ? 

Ans. — See  pp.  141  and  142. 
4.  Describe  the  construction  and  use  of  a  siren. 

Ans.—Bee  pp.  31  and  32. 
5     What  difference  exists,  as  a  rule,  in  notes  of  the  same  pitch 

when  sounded  on  closed  and  open  pipes,  respectively? 
Ans.—See  p.  116. 
6.  Describe  an  experiment  illustrative  of  resonance. 

Ans. — Any  of  those  described  on  pp.  59,  60,  62  or  63  will  do. 
7.  What  difference  is  observable  in  the  pitch  of  the  note  emitted 

by  the  whistle  of  a  railway  locomotive  when  it  is  approaching  the 
listener  as  compared  with  that  when  it  is  going  away  from  the  listener  ? 
Explain. 

Ans. — When  the  locomotive  is  approaching,  the  note  is  sharper  than 
when  going  away.     See  No.  6,  p.  285. 

Royal  University  of  Ireland,  1900. 
1.  What  are  the  ratios  of  the  vibration- numbers  of  three  notes 

which  form  a  major  common  chord  ?  Show  how  from  these  ratios  the 
frequencies  of  the  notes  forming  a  diatonic  scale  may  be  built  up. 
Am. — See  p.  45. 

2.  [a)  Explain  the  necessity  for  a  *'  tempered  scale  "  ;  (b)  What  ratio 
corresponds  to  the  interval  of  a  fifth  on  this  scale  ? 

Ans. — See  first    8    pp.,   Chapter   XVIII ;    {b)  Equal  temperament 
1  8/    7 

presumed  :      V  2    =  1  4982 

3.  Define  "  overtone  "  and  "  harmonic."  Name  some  instruments 
in  which  the  overtones  are  harmonies,  and  others  in  which  this  is  not 
the  case. 

Ans. — For  overtone,  see  p.  84. 
Harmonic  is  evidently  used  here  to  denote  overtones  which  are 

harmonic  with  the  fundamental.  For  the  former  stringed  instruments, 
organs,  &c.  For  the  latter  anv  of  the  instruments  mentioned  in 
Chapter  XI. 
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4.  (o)  Describe  the  possible  modes  of  vibration  of  a  stretched  string ; 
ib)  Draw  diagrams  showing  the  forms  assumed  by  the  string  when  the 
first  two  of  these  modes  are  superposed. 

Ans.—{a)  See  p.  90  with  fig.  46.     {b)  See  No.  4  p. 
5.  Describe  the  most  accurate  method  known  to  jou  for  determining 

the  vibration  frequency  of  a  tuning-fork. 
Ans. — Either  the  Graphic  method,  p.  36  and  37,  or  the  Tonometries 

pp.  150  and  151. 
6.  [a)  Explain  the  production  of  beats,  {b)  How  many  beats  will  be 

heard  per  second  when  two  open  organ  pipes  are  sounding  together, 

their  frequencies  being — 
(1)  200  and  203. 
(2)  200  and  403. 

Ans.— {a)  See  pp.  144,  145,  146. 
{b)  (1)  3  beats  per  second.     (2)  403  —  400  =  3  beats  per  second. 
7.  Give  the  formula  for  the  rate  at  which  sound  travels  through  a 

gas,  and  point  out  how  this  rate  will  be  affected  by  alterations  in  the 
temperature  and  pressure  of  the  gas. 

An.-         V    =    yi.41    5    (1  +  jig) 
where    F   denote    pressure  of    gas,   D    its    density,   and    t    denotes 
temperature.    See  also  p.  20. 

ROYAL    COLLEGE    OF    ORGANISTS. 

Questions. 

1.  What  intervals  do  the  following  vibration  fractions  represent  ? 
15  8        5 
16  5        3 

Ans.—^ee  p.  51. 
2.  Give  an  acoustical  reason  why  one  interval  is  more  discordant 

than  another. 

Ans.— See  Chapter  XIV. 
3.  What  is  the  length  of  the  0  C  pipe  of  the  Twelfth  stop  P 

^««.— Take    C    =   540,    0  0=:   67^,    then    length    of    C,    pipe 

=  .  ̂   ̂^1  1=  4  ft.  2  in.  approximately. 

4.  Why  is  the  sound  produced  by  a  stopped  Flue  pipe  an  octave 
lower  than  that  of  an  open  pipe  of  the  same  length  ? 

Ans. — See  pp.  60  and  61. 
5.  Describe  the  constituent  parts  of  (a)  a  Flue  pipe,  {b)  a  Reed 

Pipe. 

Ans.— (a)  See  pp.  98  and  99 ;  {b)  pp.  Ill  and  112. 
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6.  Why  does  a  stopped  pipe  give  a  hollow  sound  compared  with  the 
Boand  of  an  open  pipe  ? 

Ans.—See  pp.  106,  107. 
7.  Why  does  a  major  seventh  sound  more  dissonant  than  a  major 

second. 

Ans. — Because  in  the  first  case  the  higher  tone  beats  at  a  semitone 
distance  with  the  second  partial  of  the  lower,  while  in  the  second  case 
the  beating  distance  is  about  twice  that  interval. 

8     Why  should  students  of  music  study  the  elements  of  Acoustics  ? 

Ans. — Briefly,  because  the  laws  of  Acoustics  are  the  foundations  of 
music ;  for  example,  a  knowledge  of  acoustics  is  necessary  in  order  to 
understand  the  construction  of  the  scale  ;  the  estimation  of  intervals  ; 
the  fundamental  facts  of  harmony;  the  nature  and  origin  of  dissonance, 
temperaments,  &c 

Miscellaneous  Questions. 
1.  Find  the  approximate  length  of  the  C  Ci  pipe  on  the  open 

diapason  8  ft.  What  id  the  pitch  of  note  on  open  diapason  8  ft. 
length,  the  pipe  of  which  is  1  ft.  6  ins.  ? 

Ans. — To  find  approximate  length  of  0C|;  pipe,  CC  being  8  ft.,  it 
is  first  ueceesary  to  assess  the  interval  between  the  two.  This  is  a 

chromatic  semitone.  The  vibration  fraction  for  this  interval  being  |i. 
(see  p.  51)  the  8  ft.  length  of  the  C  C  pipe  must  be  divided  by  25  and 

multiplied  by  24— 

8  X  24  -f-  25  =  7||-  =  7  ft.  8  ins.  approximately. 
To  find  out  the  pitch  of  a  pipe  of  1  ft.  6  ins.  in  length.    In  the  first 
place  it  must  be  some  note  between  the  2  ft.  and  1  ft.  0,  viz.,  between 

-^-    Now  2  ft.   X  3  ft.  =  6  ft.,  and  6  ft.  -j-  4  ft.  = 

1  ft.  6  in.,  and  as  ̂   is  the  vibration  ratio  of  a  Fourth,  the  required 

pitch  is  F. 
2 .  (a)  How  does  a  etring  vibrate  as  a  whole,  and  at  the  same  time  in 

Eegments,  to  form  harmonics?  (b)  How  is  the  tone  of  the  (one 
segmental)  fundamental  kept  up,  although  the  harmonics  are  sounding  ? 
(e)  Does  the  fundamental  vibrate  first,  then  the  segments  for  the  8ves, 
Sths,  4ths,  &c.,  one  after  the  other  respectively,  or  do  they  all  vibrate 
together  ?  {d)  What  causes  the  harmonics ;  i.e.,  what  causes  the  string 
to  assume  the  different  segments,  seeing  it  only  gets  plucked  to  vibrate 
its  own  (one  segmental)  fundamental? 

Ans. — (a)  Students  often  have  a  difficulty  in  realising  that  a  body 
can  have  several  independent  motions  at  the  same  time,  yet  the 
phenomenon  is  a  very  common  one.  Take  the  case  of  two  persons  in 
the  opposite  corners  of  a  carriage  of  an  express  train,  tossing  a  ball 
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from  one  to  the  other.  The  ball  has  several  independent  motions. 
While  it  is  being  tossed  across  the  carriage,  it  is  also  travelling  in  the 
direction  in  which  the  train  is  moving,  and  at  the  same  speed  as  the 
train.  Moreover,  the  ball  and  the  train  are  both  moving  from  west  to 
east  at  the  rate  of  several  hundred  miles  an  hour,  a  motion  due  to  the 

earth's  rotation.  Lastly,  the  ball,  train,  and  earth  are  whirling  round 
the  sun  at  a  still  more  rapid  rate.  Thus,  the  ball  has  four  distinct 
motions  at  the  same  time.  In  the  same  manner,  there  is  no  real 
difficulty  in  conceiving  a  stretched  string  vibrating  as  a  whole,  and  at 
the  same  time  in  two  or  more  segments,  {b)  The  string  vibrating  as 
a  whole  gives  the  fundamental,  and  vibrating  in  two,  three,  four,  or 
more  segments  at  the  same  time,  produces  also  the  first,  second,  third, 
fourth,  and  higher  harmonics,  or  as  it  is  better  to  term  them,  overtones, 
{c)  All  together,  [d)  Stretch  a  heavy  cord  ten  or  twelve  feet  long 
between  two  fixed  points ;  the  heavier  it  is  the  more  slowly  it  will 
vibrate,  and  thus  its  vibration  will  be  the  more  easily  seen.  An  india- 
rubber  tube  filled  with  sand  answers  the  purpose  very  well.  Set  it 
vibrating  by  a  gentle  movement  near  the  centre ;  it  will  vibrate  as  a 
whole,  i.e. J  with  one  vibrating  segment.  Bring  it  to  rest  and  now  strike 
it  somewhat  sharply  at  about  J  of  its  length  from  one  end.  It  will 
then  vibrate  in  two  segments.  By  following  up  this  line  of  experiment, 
it  may  be  made  to  vibrate  in  three  or  more  segments,  the  number  being 
only  limited  by  the  flexibility  of  the  cord.  Moreover,  when  the  tube 
is  set  vibrating,  say  at  |th  its  length  from  the  end,  it  is  not  difficult 
after  a  few  trials  to  get  it  to  vibrate  in  halves  and  as  a  whole  at  the 
same  time.  Now,  a  stretched  string  producing  a  musical  tone  vibrates 
in  exactly  the  same  way,  but  owing  to  its  lightness  and  flexibility,  it  is 
found  impossible  to  get  it  to  vibrate  as  a  whole,  that  is,  in  one  segment 
alone;  some  other  segmental  vibration  is  always  present  under  ordinary 
musical  conditions. 

3.  A  vibrating  tuning-fork  is  held  over  a  tall  cylinder,  into  which 
water  is  gradually  poured.  Describe  and  explain  the  variation  that 
takes  place  in  the  sound  of  the  fork.  How  could  you  employ  this 
apparatus  to  find  the  velocity  of  sound,  the  period  of  the  vibration  oi 
the  fork  being  given  ? 

Ana— For  first  part  of  question,  see  pp.  61  and  62.  For  second  part, 
Hold  vibrating  fork  over  cylinder ;  gradually  pour  in  water  until  the 
air  column  in  cylinder  gives  out  its  maximum  resonance.  Then 
measure  distance  from  surface  of  water  to  mouth  of  cylinder.  Multiply 
four  times  this  distance  by  the  vibration  number  of  the  fork  and 
the  product  will  be  the  distance  sound  travels  per  second ;  ».«.,  the 
velocity  of  sound. 

4.  What  name  is  given  to  the  difference  between  a  diatonic  and  a 
chromatic  semitone  ? 
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Ana. — The  difEerence  between  a  diatonic  semitone  and  the  greater 

,  ^.  .,  16        135        16        128        2048 
chromatic    Bemitone  =  TS  "^  128  =  15  ><  135  =  21)25 
it  is  called  the  Diaskhisma.    The  difEerence  between  a  diatonic  semitone 

,.,     ,  ^  ,.  .,  16        25        16        24        128 
and  the  lesser  chromatic  semitone  ziiTg-f-ni^TcXoB^  12^ 

It  is  called  the  Enharmonic  or  Great  Diesis. 

5.  Supposing  this  note    i^  to  give  520  vibrations  per  second 

find  the  vibration  numbers  of  the  minor  7th  above  it,  produced  (1)  by 
a  perfect  5th  added  to  a  minor  3rd,  and  (2)  by  the  sum  of  two  perfect 
4th8. 

520  3  6  „^ 

Ans.—     -J-     X     2     X     5    =    93^ 

520  4  4 

-J     X     3     X     3    =:    924-4 

/E 

6.  How  is  the  formula    v  ̂      modified  so    as  to    apply  to  the 

velocity  of  sound  in  air  ? 

In  the  case  of  air  E  represents  the  elasticity  of  air,  which  is  measured 
by  the  ratio  of  the  pressure  applied  to  the  compression  produced. 
Thus,  if  a  certain  volume  of  air  under  a  pressure  F  is  submitted  to  a 

small  additional  pressure  p,  then,  by  Boyle's  law,  the  diminution  in 

volume  thus  caused  will  be  b;  consequently  E  is  the  ratio  of  p  to  -p 
that  is — 

^  -P-r-  p-  1  X  ̂ _P 

This,  however,  is  only  true  if  the  compression  produces  no  rise  in 
temperature  ;  but  heat  is  always  produced  during  compression.  And 
in  the  case  of  sound  waves  the  compression  is  so  rapid  that  the  heat 
has  not  time  to  escape,  and  thus  a  rise  of  temperature  occurs  during 
the  condensation.  The  amount  of  heat  produced  is  proportional  to  the 
compression,  and  this  increases  the  elasticity  of  the  air  in  the  same 
proportion.  The  amount  by  which  the  elasticity  of  the  air  is  thus 
increased  has  been  found  by  experiment  to  be  1  41,  so  that  the 
formula — 

V  =    y^-  becomes    V   ̂    y^-^"^ 
Expressing  P  and  D  in  our  English  units :  2),  the  density  or  weight  of 



EXAMINATION  PAPERS.  303 

air  per  cubic  foot,  is  565  grains  at  the  freezing  point,  and  at  a  pressure 
of  14  692  lbs.  per  square  inch.  Now  14  692  lbs.  =  14  692  X  7,000 
grains,  and  therefore  14  692  lbs.  per  square  inch  is  equivalent  to 

14-692  X  7000  X    144  grains  per  tquare  foot.      Thus  our  formula— 

T7    _     ./P  X   141 

J) 
becomes    V   =    ̂   14-692  x  7000  X  144  X/X  141 

5G5 

and  taking^  =:  32  186  (introduced  to  express  P  in  dynamical  units) 

we  get  y  __     /14  692  X  7000  X  144  X  32186  X  1-41 ^  565 

7.  (a)  Has  the  system  of  tuning  keyboard  instruments  been  always 
the  same  ?  (b)  If  not,  what  different  systems  exist  now,  or  have  existed 
in  the  past  ?     (Edinburgh,  1903.) 

Ans. — (o)  No.  (b)  Tuning  in  Mean-tone  temperament.  See  p.  234, 
et  seq.    Tuning  in  Equal  temperament.     See  p.  238,  et  aeq. 

8.  What  is  the  difference  between  noise  and  tone  and  how  are  they 
produced  ?    (Edinburgh,  1903.) 

^?j*— Noise  is  produced  by  irregular  or  non-periodic  vibrations,  tone 
by  regular  or  periodic  vibrations. 

9.  Give  the  etymology  and  meaning  of  the  word  Acoustics,  and  say 
of  what  the  Science  it  names  treats.  (University  of  Edinburgh, 
March,  1904  ) 

Af!s. —The  word  Acoustics  is  derived  from  the  Greek  akouo,  I  hear. 
Acoustics  is  that  branch  of  physics  which  treats  of  the  phenomena  of 
sound,  sound  waves,  and  the  vibrations  of  elastic  bodies  generally. 

10.  What  are  the  vibration  numbers  of  the  tones  of  a  Perfect  Fifth, 
a  Perfect  Fourth,  and  a  Major  Third  above,  and  a  Perfect  Fourth  below 
a  tone  of  290  vibrations  ?    (Edinburgh,  1904.) 

.-  Perfect  Fifth  above 
290 

X 
3 

2 
=    435. 

Perfect  Fourth  above 
290 

1 
X 

4 

3 
=    386|. 

Major  Third  above 
290 

1 
X 

5 

1 

=    362^ 

\ 

Perfect  Fourth  below 
290 

X 
3 

4 
=    217|. 
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11.  DistiDguish  between  longitudinal  and  transverse  wave  motion, 
and  give  instances  of  each  from  instruments  used  in  the  orchestra. 
(University  of  Cambridge,  Easter  Term,  1901.) 

Ans. — Longitudinal  wave  motion  occurs  in  the  flute,  oboe,  clarinet, 
trombone,  trumpet,  comet,  bassoon,  and  horns.  Transverse  wave 

motion  takes  place  in  the  violin,  viola,  'cello,  double  bass,  and  harp. 
12.  A  string  2  ft.  long  and  stretched  with  a  weight  of  10  lbs,  has  a 

vibration  number  300.  Give  three  distinct  methods  of  reducing  its 
vibration  number  to  200.     (Cambridge,  1901.) 

Ans.—ibt.  Reduce  tension.    Let  T be  tension  required — 

,T  200  2 

^  10 

T 

10 

T    : 

2nd.  Lengthen  string. 

Z    _ 

2    
 ~ 

300  3 

4 

9 

:    4|lbs. 

Let  L  be  the  length  required- 
300    _     3 

200    ~     2 
^    =     2 

X     2 
3  ft. 

3rd.  Eeduce  tension  and  shorten  string.    Beduce  tension  say 

to  1^  lbs.  and  let  F  be  corresponding  vibration  number.     Then — 
r 

300 

^10  - 

1  _       V' 9  ~  90000 

F2  =  10000 

V  =  100 

Now  take  half  the  string  and  the  vibration  number  will  be  200.  Au 
alternative  method  would  be  to  wind  a  wire  round  string,  so  as  to 
weight  it  till  its  vibration  number  is  reduced  to  200. 

13.  Describe  the  way  in  which  air  vibrates  in  an  open  organ  pipe 
when  it  gives  its  first  overtone.  What  would  be  the  result  if  the  pipe 
were  blown  with  hydrogen  instead  of  air?    {Cambridge,  1901.) 

Ans.— For  the  first  part  see  pp.  102  and  103,  and  Question  4  (p.  278) 
second  part.    Velocity  of  sound  in  different  gases  varies  inversely  as 
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the  square  roots  of  their  densities  (see  p.  20).  The  densities  of 

hydrogen  and  air  are  as — 
1       :       14'435 

Therefore— 

"Velocity  in  Hydrogen              /  14'435 
Velocity  in  Air  1 

=  3'8  nearly. 

That  is  : — The  velocity  of  sound  in  hydrogen  is  3  8  times  the  velocity 
in  air.  Now  vibration  number  of  a  pipe  is  found  by  dividing  velocity 
by  length  of  pipe.  Therefore  it  is  evident  that  the  vibration  number 
of  the  pipe,  when  blown  with  hydrogen,  will  be  3  8  times  as  great  as 
when  blown  with  air. 

14.  What  is  the  effect  on  the  pitch  of  a  sound  if  its  source  is  moved 
rapidly  towards  or  from  the  observer?  Explain  the  reason  of  any 
change  of  pitch.     (Cambridge,  1901.) 

Ans.—  A  G  B 

Let  A  be  the  source  of  the  sound  at  rest,  and  B  the  observer,  also  at 
rest.  Suppose  that  A  vibrates  100  times  per  second.  Then  as  long  as 
B  is  at  rest,  his  ear  receives  100  waves  per  second.  Now  let  B  move  up 
towards  A;  say  he  gets  to  C  in  one  second.  B  will  now,  not  only 
receive  the  100  waves  per  second  that  he  would  have  done  if  at  rest, 
but  also  all  the  waves  that  lie  between  B  and  G ;  thus  the  note  he  hears 

is  sharper  than  before.  Similarly,  if  B  were  moving  away  from  A,  the 
note  would  obviously  be  flattened.  Analogous  reasoning  shows  a 
similar  result,  if  B  is  at  rest  and  A  moves  towards  or  from  B. 

15.  Give  a  brief  description  of  the  general  conception  of  wave 

motion,  and  explain,  in  regard  to  it,  the  terms  amplitude,  wave-lengthy 
period,  form,  frequency,  and  phase.  Distinguish  between  the  motions  of 
progressive  waves  and  stationary  waves,  and  illustrate  with  diagrams. 
(Cambridge,  1902.) 

Ans. — For  first  part  of  question  see  pp.  12,  13,  22,  and  137  ;  period  is 
time  of  a  vibration  or  time  a  wave  takes  to  travel  its  own  length ; 
frequency  is  vibration  number.  Waves  such  as  those  figured  and 

described  on  pp.  12,  13,  and  14  are  progressive  waves.  The  "rope" 
■n^o'ss,  described  and  figured  on  p.  90,  are  stationary  waves. 

16.  In  what  way  does  the  pitch  of  the  note  given  by  a  string 
vibrating  transversely  depend  on  its  length  and  tension  ?  Show  that  an 
increase  of  two  per  cent,  in  the  tension  or  a  decrease  of  one  per  cent,  in 
the  length  produce  very  nearly  the  same  rise  in  pitch.  (Cambridge, 
1902.) 

Ans. — For  first  part  see  p.  87.  Second  part:  Let  n  be  vibration 
number  of  string  when  tension  is  100,  and  let  length  of  string  be  100 
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centimetres.    Then  an  increase  of  2  per  cent,  raises  the  tension  to  102 
Let «  be  now  the  vibration  number.    Then — 

X  /102  v^l02  10  1 

n    =    v^roo    =  IF    =    1^    =    (very  nearly)  l-OI. 
,*,    a:    =    M     X     101  very  nearly. 

A  decrease  of  one  per  cent,  reduces  length  of  string  to  99.     Let  y  be 
now  the  vibration  number,  then — 

y  100 -    =    —      =    1-01  very  nearly. tt  99 

y    =    «     X     1  01  very  nearly. 

Thus  the  rise  in  pitch  is  very  nearly  the  same  in  each  case. 
17.  (a)  On  what  does  the  pitch  of  a  note  depend?  (b)  What  exact 

information  in  relation  to  the  pitch  difference  of  the  common  musical 
intervals  is  afforded  by  the  syren?    (University  of  Cambridge,  1903.) 

An8.—{a)  Yibration  rate,  or  frequency,     {b)  Helmholtz'  syren  proves 
that  the  vibration  ratios  of  notes  at  the  intervals  of  an  octave,  a  fifth, 

and  a  major  third  are  exactly— 
2  3  5 — »  — >  — 
12     4 

18.  (a)  Describe  the  simple  modes  of  transverse  oscillation  of  a  tense 
string,  and  state  how  the  pitch  of  the  corresponding  notes  depends  ou 
the  length  and  tension  of  the  string,  (b)  At  what  points  of  its  length 
may  the  string  be  touched  to  bring  out  the  harmonic  which  is  three 
octaves  above  the  note  of  the  open  string.     (Cambridge,  1903.) 

Ans. — (a)  See  p.  87,  et  seq.     {b)  At  ̂   or  |  of  its  length  from  one  end. 
19.  (a)  Give  any  mechanical  illustrations  of  sympathetic  oscillation 

and  explain  how  the  principle  involved  applies  to  air  resonators. 
(A)  How  is  the  pitch  of  a  resonator  affected  (1)  by  increasing  the 
volume,  (2)  by  enlarging  the  orifice  ?    (Cambridge,  1903.) 

Ans. — (a)  See  pp.  57,  60,  et  seq.  {b)  (1)  pitch  is  lowered,  (2)  pitch  is 
raised. 

20.  (a)  Discuss  and  explain  briefly  the  phenomenon  known  as  beats. 
{b)  On  what  does  the  rapidity  of  the  beats  depend  ?  (c)  Two  forks  give 
a  slow  beat,  but  have  a  pitch  difference  too  small  to  be  detected  by  ear. 
How  may  the  sharper  fork  be  selected  by  testing  with  a  third  fork  P 

(Cambridge,  1903.) 
Ans.— {a)  and  (i)  See  pp.  144  to  147.  (<?)  Let  third  fork  be  sharper 

than  other  two.  Count  the  number  of  beats  this  third  fork  makes  with 
each  of  the  others  in  the  same  time.  That  which  makes  the  fewer 
beats  is  the  sharper  of  the  two.  If  the  third  fork  were  flatter  than  the 
other  two,  that  fork  which  makes  the  larger  number  of  beats  would  be 
the  sharper. 
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21.  What  are  the  advantages  of  a  tuning-fork  as  a  standard  of 
pitch  ?    (Royal  University  of  Ireland,  1901.) 

Ans. — Tuning-forks  maintain  their  pitch  well,  and  are  little  affected 
by  ill-usage ;  a  slight  rusting,  for  instance,  changes  the  pitch  but  little. 
Moreover,  the  alteration  in  pitch  for  change  of  temperature  is  very 
slight  (see  p.  123). 

22.  (a)  Describe  an  experimental  method  of  finding  the  wave-length 
of  the  note  given  by  a  tuning-fork,  {b)  How  would  you  deduce  the 
frequency  of  the  fork  ?     (University  of  Ireland,  1901.) 

Ans. — (a)  Hold  the  vibrating  tuning-fork  over  the  open  end  of  a 
suflQciently  long  and  not  too  wide  tube  closed  at  the  other  extremity. 
Pour  in  water  until  the  maximum  resonance  is  obtained.  Measure  the 

distance  from  the  surface  of  the  water  to  the  open  end.  Four  times 

the  distance  will  give  the  wave-length  approximately,  [b)  Divide  the 
velocity  of  sound  by  this  wave-length  and  the  result  will  be  the 
frequency. 

23.  Why  does  the  harshness  of  a  discord  vary  with  the  nature  of 
the  instrument  on  which  the  discordant  notes  are  sounded  ?  (University 
of  Ireland,  1901.) 

Ans  — Best  answered  by  an  illustration.  Take  for  example  the 
secondary  dissonance.  No.  2,  on  p.  165.  If  this  is  sounded  on  the 
stopped  diapason,  or  by  clarinets,  nearly  all  the  elements  of  roughness 
will  disappear,  for  the  S|,  S,  and  f  are  absent  in  the  tones  of  such 
instruments. 

24.  The  strings  of  a  violin  are  tuned  to  the  notes  G,  D,  A,  E,  as 
correct  fifths.  In  which  of  these  keys  will  the  open  strings  have  the 
correct  pitches  as  diatonic  notes  of  the  major  scale?  (University  of 
Ireland,  1901  ) 

Ans. — In  key  G  the  open  E  will  be  too  sharp  (see  Chap.  XVIII). 
,,    ,,    A  the  G  is  not  in  the  Diatonic  Scale. 

,,    ,,    E  the  G  and  D  are  not  in  the  Diatonic  Scale. 

Therefore  it  is  only  in  key  D  that  all  the  open  strings  have  the  correct 
pitches  as  diatonic  notes  of  the  major  scale. 

25.  What  do  you  know  of  the  use  which  has  been  made  of  flames  in 
studying  the  properties  of  musical  sounds?  (University  of  Ireland, 
1901.) 

-4««.— See  pp.  4,  104,  148.  If  the  manometric  flame  figured  on  the 
left  in  fig.  55  be  placed  at  the  base  of  a  resonator  tuned  to  a  note  of  a 
particular  pitch,  then  the  reflection  of  the  flame,  in  a  revolving  mirror 
(see  p.  4),  will  at  once  show  whether  a  note  of  this  particular  pitch  is 

present  in  any  compound  tone  or  assemblage  of  tones.  Thus  mano- 
metric flames  may  be  employed  to  detect  or  prove  the  presence  of 

particular  partials. 
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26.  Write  a  short  note  on  the  determination  of  consonance  and 

dissonance  in  mueical  intervals,  and  also  state  what  bearing  on  this 
subject  has  the  phenomenon  known  as  beats.  (University  of  Ireland, 
1901.) 

Ans. — There  is  no  hard  and  fast  line  between  consonance  and 
dissonance,  the  one  merges  into  the  other ;  moreover,  there  are  intervals 
which  at  one  time  were  termed  dissonances,  but  are  now  included  among 
the  consonances.  It  is  difficult  to  treat  of  this  matter  in  a  short  note. 
The  shortest  answer  may  be  gathered  from  the  Summaries  to  Chapters 
XIV,  XV,  and  XVI. 

27.  (o)  What  class  of  musical  instruments  are  tuned  to  the  scale  of 
equal  temperament  and  why  ?  [b)  What  is  the  difference  between  the 
tempered  fifth  and  the  diatonic  fifth?    (University  of  Ireland,  1902.) 

Ans. — (a)  Keyboard  instruments,  and  generally,  instruments  with 
fixed  tones,  because  having  only  a  very  limited  number  of  tones 

(generally  only  12  to  the  octave).  It  is  best  to  tune  them  in  equal  tem- 
perament, as,  on  the  whole,  this  produces  the  least  divergence  from  true 

intonation.  (See  p.  238,  et  seq.,  and  the  Chapter  on  Temperament 
generally.)  (b)  Difference  between  the  tempered  fifth  and  true  fifth  is 

very  slight,  only  -\-  of  a  komma,  or — 
1500  750 
—    =    ---    See  p.  298,  2». 

28.  What  are  the  conditions  necessary  for  the  production  of  a  strong 
echo  ?    (University  of  Ireland,  1902.) 

Ans. — Ist,  For  a  strong  echo,  the  original  sound  must  itself  be  strong. 
2nd,  A  good  reflecting  surface  is  neceesary,  wood,  brick,  rock,  &c. 
3rd,  No  impediment  in  the  path  of  the  direct  sound  or  its  reflection. 
4th,  Not  too  great,  but  yet  a  sufficient  distance  between  A  and  C,  and 
C  and  B  (fig.  31,  p.  55).  5th,  A  homogeneous  atmosphere  for  the  sound 
to  travel  through,  and  absence  of  wind. 

29.  How  would  you  find  the  pitch  of  a  tuning-fork  by  means  of  a 
sonometer  P    (University  of  Ireland,  1902.) 

Ans. — First,  tune  the  wire  on  the  sonometer  in  exact  accord  with  the 
tuning-fork,  by  altering  the  tension,  or  length  of  wire.  The  vibration 
number  of  the  wire,  and  therefore  of  the  fork,  may  then  be  found  itom 
the  formula  given  on  p.  35. 

30.  Describe  fully  the  condition  of  the  air  at  a  node,  and  at  a  loop 
in  an  organ  pipe.  How  is  it  that  the  pitch  of  the  note  is  unaltered 
when  a  small  hole  is  opened  in  the  wall  of  the  pipe  at  a  loop.  (Eoyal 
University  of  Ireland,  1903.) 

Ans. — As  described  on  p.  104,  the  air  at  a  node  is  undergoing  rapid 
alternations  of  density,  but  at  a  loop  or  antinode  no  such  changes  of 
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density  occur  ;  in  other  words,  the  air  at  a  loop  is  of  the  same  density 
as  the  external  air.  Hence  a  smaU  hole  in  the  wall  of  the  pipe  at  a  loop 
will  leave  things  unaltered. 

31.  A  string  yields  the  notes  D  and  E  as  consecutive  harmonics. 
What  is  the  pitch  of  its  fundamental  note?    (University  of  Ireland, 
1903.) 

10 
Ans. — Vibration  ratio  of  E  and  D    =     --.    Therefore  E  and  D  are 

the  10th  and  9fch  partials  of  C,  three  octaves  below. 

32.  Why,  with  a  given  change  of  temperature,  does  the  pitch  of  an 
organ  not  vary  altogether  in  one  direction?  (Royal  College  of 
Organists,  Associate,  1902.) 

^««.— See  pp.  101  and  111. 

33.    What  length  of  pipe  is  required  to  give  this  note 
-s»- 

in  each  of  the  following  organ  stops :— Open  Diapason,  Stopped 
Diapason,  and  Harmonic  Flute  ?  (Royal  College  of  Organists,  Asso- 

ciate, 1903.) 

Ans. — Taking  middle  C  =  256  and  1120  as  velocity  of  sound  on  the 

Open  Diapason  length  is  about — 
1120 

256'x2 

=    2  ft.  2i  in. 

On  the  Stopped  Diapason— 

J^^-1    =    ,  ft.  1  iu. 256X4 

On  the  Flute— 

  =    6^  in. 
512X4 

34.  Give  the  fundamental  and  the  two  succeeding  harmonics  of  a 

stopped  organ  pipe  8  ft.  long.     (Royal  College  of  Organists,  Associate, 
1903.) 1120 

Ans. — Vibration  number  of  fundamental    ^    —-- -    =    35. 

Then  the  vibration  numbers  of  the  two  succeeding  harmonics  must  be— 
3     X     35    =    105,     and      5     X     35    =    175. 

These  correspond  to  notes  a  little  flatter  than    D3    A^    and    F|, . 

35.  What    happens  when  an  organ  pipe  is  overblown?      (Royal 
College  of  Organists,  Associate,  1903.) 

Ans.—k.t  first  the  pitch  of  the  fundamental  rises,  and  finally  the 
fundamental  disappears  and  the  Ist  overtone  is  heard. 
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36.  How  is  the  sound  of  flue-pipes  produced  ?  (Hoyal  College  of 
Organists,  Associate,  1903.) 

Arts. — See  p.  99. 
37.  If  the  temperature  of  a  concert  room  rises  rapidly  how  would  it 

affect  the  various  groups  of  orchestral  instruments  ?  (Royal  College  of 
Organists,  Fellowship,  1901.) 

An$. — The  brass  and  wood-wind  rise  in  pitch  with  increase  of 
temperature.  A  rise  in  temperature  alone  would  lengthen  the  strings, 
and  this  would  decrease  the  tension  and  so  cause  a  fall  in  pitch,  but  in 

the  case  of  strings  of  cat-gut  and  the  like,  the  matter  is  complicated 
by  the  increase  of  humidity  which  accompanies  rise  of  temperature 
in  a  concert  room,  and  this  has  an  opposite  effect,  increasing  the 
tension. 

38.  Taking  the  middle  C  as  having  264  vibrations  a  second,  how 
many  vibrations  would  the  following  notes  above  the  C  have, 

respectively :  E,  Gfl;,  Ab  P  (Royal  College  of  Organists,  Fellowship, 
1901.) 

264  5 
Ans.—  E     =    — -     X     -    =    330. 1  4 

.  330  5 

Gt=    -^     X     -    =    412i 
264  2  4 

Ab   =    --     X     7     X     7    =     422|. 1  15 

39.  Explain  summational  and  differential  tones.    Give  in  notation 
3     9     10     6 

the  differential  tones  of  the  intervals  whose  ratios  are  -,  -,   — ,  -, 2     8     9      5 

_j^_^^   :    as  the  lower  sound  of  each.      (Royal  College  of 

takmg    ̂ -    —    Organists,  Fellowship,  1902.) 
3 ^'-  ̂ i=-   \^ 
10 

6 

.^Ql 

40.  How  are  {a)  open  pipes,  {b)  stopped  pipes,  (<?)  reeds,  tuned. 
(Royal  College  of  Organists,  Fellowship,  1903.) 

Ans.— {a)  Roughly  tuned  by  altering  length  and  finally  adjusted  by 

the  pressing  in  or  out  of  the  open  end  by  the  "  tuning  cone."  {b)  By 
pressing  in  or  drawing  out  the  stopper  which  closes  the  pipe,  {e)  See 
y.  Ill  and  p.  112  with  fig.  60 
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41.  (a)  A  trumpeter  sounds  a  note  on  a  railway  train.  The  note  is 
heard  by  listeners  at  two  stations,  one  towards  which  the  train  is 
travelling,  the  other  from  which  the  train  is  receding.  Have  the  notes 
heard  at  the  two  stations  the  same  pitch  ?  Give  reasons  for  your 
answer.     (University  of  Wales,  1904.) 

Ans. — No,  as  heard  at  the  former  station,  the  pitch  is  higher;  and, 
as  heard  at  the  latter  station  lower  than  it  really  is,  for  reasons  see 
p.  305,  No.  14. 

42.  A  wind  is  blowing  from  a  bandstand  towards  a  listener.  State, 
with  reasons,  whether  the  pitch  of  the  notes  is  affected  by  the  wind. 
(University  of  Wales,  1904.) 

^»«.— The  pitch  of  the  notes  is  not  affected  by  the  wind.  It  is  true 
that  the  velocity  of  the  sound  would  be  increased  by  the  wind,  but 
the  length  of  the  sound  waves  would  be  increased  in  the  same  ratio  : 

therefore,  the  number  of  waves  per  second  which  reach  the  listener's 
ear  would  be  the  same,  whether  the  air  be  still  or  in  motion. 

43.  The  stretching  force  in  a  string  is  8080  grammes  weight,  the 
vibrating  length  is  40  centimetres,  and  the  mass  of  a  centimetre  of  the 

string  is  "0189  gramme.  Taking  gravity  as  981  find  the  frequency. 
(University  of  Wales,  1904.) 

Ans. — The  formula  required  for  working  this  is  given  on  p.  87  : — 
1  /T 

N    =     —  V  — 2i  M 
Here  i    =    40 

M  =      0189 

T    =    8080     X     981  (expressed  in  dynamic  units). 

1        /8080     X     981 
Therefore     N   =    —     V   

80  0.89 
=    256. 

44.  (a)  Explain  the  phenomenon  of  beats,  (b)  Illustrate  by  drawing 

curves  to  represent  the  varying  displacement  of  the  tympanic  mem- 
brane for  each  of  the  two  notes  nearly  but  not  quite  in  unison,  and  the 

resultant  curve  given  by  combining  the  displacements.  (University  of 
Wales,  1904.) 

Ans. — (a)  See  pp.  144,  14G,  et  seq.  [b]  The  curves  on  p.  145  will 
answer  this  part  of  the  question:  A  and  B  being  the  curves  for  the 
two  notes  not  quite  in  unison  and  G  the  resultant  curve  obtained  by 
combining  their  displacements. 

45.  In  a  determination  made  of  the  frequency  of  a  fork,  by  means 
of  a  monochord,  the  notes  were  not  got  exactly  in  tune.  Without 
putting  them  in  tune  how  could  you  ascertain  the  exact  frequency  of 
the  fork?     (University  of  Wales,  1904.) 
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^Ms.— First  ascertain  by  ear  which  is  the  sharper,  the  fork  or  the 
monochord.  Then  count  the  number  of  beats  the  fork  and  monochord 

produce  when  sounded  together  for  say  30  seconds.  Divide  number  of 
beats  by  30.  This  gives  number  of  beats  per  second.  If  the  fork  is 
the  sharper,  add,  if  the  flatter,  subtract  this  number  from  the  frequency 
number  of  the  monochord. 

46.  State  what  you  know  regarding  the  mode  of  vibration  of  a 
violin  string.  How  do  you  explain  the  maintaining  action  of  the  bow  ? 
(University  of  Wales,  1904.) 

Ana. — The  bow,  aided  by  the  resin  with  which  it  is  rubbed,  catches 
hold  of  the  string  at  some  point  and  carries  it  forward  with  it  till  the 
adhesion  can  no  longer  equal  the  elastic  force  of  the  string  thus  brought 
into  play :  the  string  therefore  rebounds,  only  to  be  again  caught. 
This  action  is  repeated  as  long  as  the  bowing  is  continued  and  thus  the 
vibration  is  maintained.  A  violin  string  cannot  vibrate  in  one  seg- 

ment only;  usually  it  vibrates  in  1,  2,  3,  4,  5,  6,  7,  or  even  more 
segments,  yielding  a  klang  rich  in  partials.     (See  Chap.  IX.) 

47.  The  note  emitted  by  a  standard  tuning-fork  while  it  is  being 
bowed  is  not  precisely  of  the  same  pitch  as  the  note  it  emits  when  left 
to  itself.  Explain  why  this  is.  How  is  it  that  the  act  of  drawing  a 
bow  across  the  prongs  is  able  to  produce  a  smooth  tone  at  all? 
(London,  1900.) 

Ans  —The  bow,  or  rather  the  particles  of  resin  on  the  bow,  catch 
the  prongs  of  the  fork  and  move  them  from  rest  (see  p.  86).  Though 
the  fork  is  thus  slightly  constrained  by  the  movement  of  the  bow  and 
thus  slightly  altered  in  pitch,  yet  the  energy  of  the  moving  prongs  is 
sufficient  to  keep  up  an  almost  uniform  vibration  rate,  and  thus  the 
tone  produced  is  sufficiently  smooth  and  uniform. 
48.  Draw  separately  the  wave  forms  that  will  represent  a  tone  and 

its  higher  octave  of  equal  loudness.  Then  draw  the  resultant  wave 
form  for  the  compound  sound  produced  by  them  jointly,  under  such 

phase  relations  that  when  the  ordinate  of  the  wave-form  of  the  lower 
note  is  zero,  that  of  the  higher  wave-form  is  either  at  a  maximun  or  a 
minimum.     (London,  1900.) 

An8. — Describe  any  circle.  Fig.  I,  and  divide  it  into  any  even 
number  of  equal  parts  (say  twelve^,  numbered  1,  2,  3,  &c.    Join  points 

3 
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as  in  figure.  Prolong  the  horizontal  diameter  12  6  to  the  right,  and 
measure  ofE  twelve  equal  parts,  a,  b,  e,  and  so  on.  Draw  vertical  lines 
from  these  points  and  make  a  1  equal  to  Al,  b  2  equal  to  B  2,  and  so 
on.  Join  the  tops  of  these  verticals  1,  2,  3,  &c.,  by  a  curve  as  shown; 
this  curve  will  be  the  wave-form  representing  a  tone.  Do  the  same  for 
Fig.  II,  but  let  the  equal  spaces  a,  b,  e,  &c.,  be  exactly  one  half  of  what 

FioD 

they  are  in  the  Fig.  I.  The  curve  thus  obtained  will  be  the  wave-form 
of  the  higher  octave  of  equal  loudness.  Now  draw  the  upper  curve, 
Fig.  I,  again,  as  X  F  in  Fig.  III.  Then  draw  the  curve  in  Fig.  II, 
S.8  M  N F  in  Fig.  Ill,  but  so  that  point  3  in  Fig.  II  is  exactly  over 

FiCffl 

X  in  Fig.  III.  ̂ ow  combine  these  two  curves  in  Fig.  Ill,  as  explained 
on  p.  82,  and  we  get  the  thick  curve  M  G  H  K  P,  which  is  the 
resultant  wave -form  required. 

49.  (a)  Write  down  the  vibration  ratios  for  the  ordinary  musical 
intervals.  (J)  Show  that  three  successive  major  thirds  are  not  equal  to 
one  octave,  and  [e)  that  twelve  successive  fifths  are  not  equal  to  seven 

c'taves.     ̂ London,  1900.) 
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Ana.— {a)  See  p.  51.     (*)  Three major  thirds  = 
- 

5            5            5            125 

4     ><     i     ̂     i    =     64- 

An  octave 

_     2 

~     
1 

= 

128 

64 

{c)  Twelve  fifths    =    | very  nearly. 

Seven  octaves    = 

(t)'  -  -
" 

Seep. 
239. 

50. What  do  you  know  about  the  vowel  sounds? 
How has  tl 

composition  been  investigated  experimentally,  and  with  what  result? 
(London,  1900  ) 

Ans. — The  origin  of  vocal  tone  is  the  vibration  of  the  vocal  cords. 
The  tone  thus  produced  is  highly  compound,  consisting  of  many 
partials  belonging  to  the  harmonic  series.  The  different  vowel  sounds 
are  produced  by  the  resonance  imparted  to  certain  of  these  partials,  by 
the  varying  shape  and  capacity  of  the  buccal  cavity  (see  pp.  114  and 
115^.  Willis  and  Helmholtz  have  investigated  their  composition  chiefly 
in  the  following  way.  The  mouth  was  placed  in  the  exact  form 
required  to  produce  a  particular  vowel  sound,  say  the  a  in  father. 

Vibrating  tuning-forks  of  various  pitches  were  then  held  close  to  the 
mouth,  and  the  fork  or  forks  selected  (in  this  case  Bj?';  which  were 
most  powerfully  reinforced  by  it  while  in  this  position.  By  examining 
all  the  vowel  sounds  in  this  way  it  has  been  shown  that  "vowel 
qualities  of  tone  are  essentially  distinguished  from  the  tones  of  most 
other  musical  instruments  by  the  fact  that  the  loudness  of  their  partial 
tones  does  not  depend  solely  upon  their  order,  but  preponderantly  upon 

the  absolute  pitch  of  those  partials."    For  example,  the  characteristic 

tone  of  the  vowel  a  (father)  is  Zj^  Now  whether  that  vowel  sound 

"i 

is  produced  by  a  bass  upon  (^  ]7<^->  or  by  a  soprano  on  3?:k^::^ 

it  is  the  JL  which  is  reinforced  by  resonance,  though  this  is  the 

sixth  partial  of  the  bass  tone,  and  the  second  of  the  soprano. 

51.  (fl)  What  are  beats?  (*)  What  is  their  cause?  (<?)  What  is 
the  distinction  between  primary  beats  and  secondary  beats  ?  (<f)  Why 
are  beats  between  two  mistuned  tuning-forks,  or  those  between  two 
mistuned  stopped  organ  pipes,  more  incisive  than  the  beats  between 
two  equally  mistuned  strings  in  a  piano  ?     (London,  1900.) 
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Ans.—{a)  and  {b)  See  pp,  146, 147,  and  152.  {c)  Primary  beats  :  thoee 
between  fundamentals.  Secondary  beats :  those  between  overtones  and 

differentials,  [d)  The  tones  of  tuning-forks  and  stopped  organ  pipes 
are  practically  simple ;  thus  the  beats  are  primary  and  loud.  The 
tones  of  the  pianoforte  are  very  complex  and  evanescent;  thus  the 
whole  energy  of  the  tone  is  broken  up  amongst  a  number  of  partials, 
and  is  quickly  dissipated,  and  therefore  the  beats  also  are  less  incisive. 

52.    Assuming   /f  to  have  256  vibrations  per  second,  calculate 

the    vibration  numbers  of  i^^zd^n   and  of   z^^ztmi.    Then  from 

1:3^:  calculate  ̂ ^EJ#z,  and  from  ̂ t-imi  calculate  ̂ z^: 

(London,  1900.) 

Ans. — A 
256 

X 
2 

1 
X 

5  _ 

6  
~ 

426|. 

256 
~1~ X 

2 

T X 

4  _ 

3  
~" 

682  2. 

426f 

X 
5 

4 
= 

533} 

682-f X 
4 

z= 

546  ,V 

0$ 

Db    = 

53.  In  Joachim's  edition  of  Courvoieier's  book  on  the  technique  of 
the  violin,  it  says  that  Cj:  is  the  leading  tone  into  D  natural,  and 
must  be  very  close  to  D ;  while  on  the  other  hand  D[?  must  be  very 
near  to  0,  which  is  the  third  in  the  scale  of  Al?.  This  would  make  Cjj: 
of  higher  pitch  than  Df?.  Is  this  so  ?  Is  it  always  so  ?  Discuss  the 
theory  of  the  point.     (London,  1900.) 

Ans. — As  in  the  previous  question,  CJ,  the  leading  tone  to  D,  =  533^, 
and  Db,  the  fourth  in  scale  of  A^,  =  546jV«  Consequently,  Cit  is  not 
higher  in  pitch  than  D[?.  As  used  in  harmony  this  must  always  be  the 
case,  but  solo  violinists  have  a  tendency  to  sharpen  their  leading  tones 
for  the  sake  of  brilliancy,  hence  the  remark  in  Courvoisier. 

54.  What  is  heard  when  the  following  pairs  of  pure  tones  are 

sounded  together : — 
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(1)  C    =  128  with  e'     =    320 
(2)  C    =  128     „     B    =    120 

(3)  C     =  128      „     f     =    341-3 
(4)  0    =  128     „     b     =    240 

(5)  C"  =  512     „     f"    =    682-6 
(6)  Ov—  2048   „     b'^  =    3840 
(7)  C"'=  1024   „     d'^  =    3840 
(8)  C'^  =  2048    „     a  fork  of  frequency  2816 

Ans—{1)  320  —  128  =  192  =  g  (a  differential) 
(2)  128  —  120  =  8  beats  per  second 

(3)  341  3  —  128  =  213-3  =  a  (differential) 
(4)  240  —  128  =  112  (differential) 

128  —  112  =  16  beats  per  second 

(5)  682-6  —  512  =r  170  6  =  f  (differential) 
(6)  3840  —  2048  =  1792  (differential,  14th  harmonic  to  c  =  128) 
(7;  2804  —  1024  =  1280  =  e"'  (differential) 
(8)  2816  —  2048  =  768  =  g"    (differential) 

55.  What  are  Lessajous'  figures?  What  points  in  accoustical 
science  do  they  illustrate  ?  To  "what  practical  service  have  they  been 
put  ?    (London, 1900  ) 

Am  — Lissajous'  figures  are  obtained  in  the  following  manner : — A 
tiny  mirror  is  attached  to  the  end  of  one  prong  of  a  tuning-fork  which 
vibrates  in  a  vertical  plane.  A  second  fork  with  a  similar  mirror 
vibrates  in  a  horizontal  plane  in  such  a  way  that  when  a  spot  of  light 
in  a  darkened  room  is  reflected  from  the  mirror  of  the  first  fork  it  is 

again  reflected  from  that  of  the  second  and  from  that  to  a  screen. 
When  only  the  first  fork  vibrates,  a  vertical  line  of  light  is  seen  on  the 
screen ;  when  only  the  second,  a  horizontal  line.  But  when  both 
vibrate  a  curve  is  obtained,  due  to  the  composition  of  the  two.  On 
p.  272,  illustrations  of  such  curves  are  shown,  these  particular  ones 

being  due  to  two  forks  tuned  very  nearly  to  an  octave,  Lissajous' 
figures  enable  us  to  tune  two  forks  to  an  absolutely  true  interval. 
Ihus,  for  example,  as  long  as  the  forks  just  referred  to  are  untrue,  the 
curve  produced  continually  changes  from  the  first  of  the  five  figures 
shown  through  the  second,  third,  and  fourth,  back  to  the  first  again, 
but  as  soon  as  the  forks  attain  a  perfectly  exact  octave,  the  figure 
ceases  to  change. 

56.  Write  an  account  of  the  upper  partial  tones  (sometimes  called 

overtones),  particularly  dealing  with  the  following  points;— (a)  Their 
presence  or  absence  in  different  musical  instruments  ;  {b)  the  presence 
or  absence  of  any  particular  members  of  them  in  particular  instru- 

ments ;  {c)  their  dependence  upon  the  mode  of  excitation ;  {d)  their 
effect  upon  the  character  of  a  consonance  or  dissonance ;  {e)  the  use 
made  of  them  in  the  theory  of  music  by  Rameau.     (London,  1900.) 
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Ans.—{a),  (i),  (<?),  (rf),  fully  answered  in  the  text,  {e)  Rameau 
(1685-1764)  puts  these  two  points  as  the  foundation  of  his  theory ; 
first,  the  resemblance  between  a  tone  and  its  first  ̂  vertone,  that  is  its 
octave ;  second,  that  musical  tones  possess  the  third  and  fifth  partials 
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is  the  most  natural  of  chords  and  the  foundation  of  harmony,  and  from 
this  argues  that  harmony  is  a  natural  and  not  an  artificial  production. 

57.  Explain  the  fact  that  when  two  tuning-forks  of  respective 

frequencies,  c  =  128  and  e'  =  320  are  sounded  together,  C  =  64  is 
heard,  or  that  when  forks  of  frequencies  C""  =  2048  and  b""  =  3840 
are  sounded  together,  C  =  256  is  heard.     (London,  1901.) 

Ans. — When  a  tuning-fork  is  struck  and  not  applied  to  a  resonance 
chamber  in  unison  with  its  fundamental,  the  octave  is  almost  always 

present.  Thus  C  =  128  gives  also  C  =  256,  which  with  e'  =  320  gives 
the  differential  320  —  256  =  64.  Similarly  2048  gives  4096,  and 
4096  -  3840  =  256. 

58.  If  a  fork  of  high  pitch  is  excited  and  is  then  held  opposite  a  wall, 
and  is  moved  towards  or  from  the  wall,  beats  are  heard.  Explain  the 
circumstance  and  show  how  the  number  of  beats  per  second  depends  on 

the  pitch  of  the  fork  and  the  velocity  of  the  movement    (London,  1901.) 

Ans. — When  a  fork  of  very  high  pitch  is  excited  and  held  opposite  a 
wall,  the  reflected  waves,  together  with  the  direct  waves,  form  a  series 
of  stationary  undulations  between  the  fork  and  the  wall  in  such  a 
manner  that  the  point  in  contact  with  the  wall  is  a  node.  Similar 
nodes  occur  between  the  wall  and  the  fork  at  distances  equal  to  the 

half  wave-length  of  the  fork.  The  case  is  very  similar  to  the  waves 
figured  on  p.  106,  fig.  56  D.  These  stationary  undulations  may  be 
looked  upon  as  formed  by  the  interference  of  two  series  of  equal 
waves,  one  series  from  the  fork  and  the  other  from  the  wall.  If  now 
the  fork  be  moved  rapidly  towards  or  from  the  wall,  the  lengths  of  the 
waves  of  the  first  series  will  be  diminished  or  increased  before  the 
second  series  is  affected,  and  the  effect  is  momentarily  the  same,  as  if 

the  waves  from  two  tuning-forks  of  slightly  different  pitch  interfered. 
This  interference,  as  shown  on  pp.  144,  5,  and  6,  produces  beats,  the 
number  of  beats  per  second  depending  on  the  difference  of  the 
vibration  numbers  of  the  two  forks.  Let  V  be  the  velocity  of  sound, 
V  the  velocity  of  the  fork,  n  the  vibration  number  of  the  fork.  Then 
just  as  the  fork  is  commencing  a  second  vibration,  the  first  one  must 

have  travelled  _,  but  the  fork  has  itself  travelled  Z.  in  the  same  time ;. 
n  n 
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consequently  its  wave  length  is — 

r   —    v_    _    V+  V 

and  the  xrequency  is  V  -H 

n 

V  —  V  Vn 
n  r  T 

The  number  of  beats  per  second  is  therefore— 
Vn  Vn 

or V  +   V  V  —  V 

59.  (a)  Why  is  equal  temperament  a  necessity  in  keyboard  instru- 
ments?   (b)  In  what  respects  do  the  notes  of  the  equally -tempered 

scale  fail  of  just  intonation?    (e)  Calculate  the  logarithmic  interval 

between  a  true  fifth  and  a  tempered  fifth,  given  the  following  :  — 

Log  2  =  -30103.  log  3  =  -47712.     (London,  1901.) 
Ana.— {a)  See  chapter  XVIII.     (*)  See  pp.  241  and  242.     {c)  Equal 

]2/    7 
fifth  =  V  2 

•30103 

7 
12 

210721 -17560 

True  fifth  =  - 2 
-47712 
•30103 

17609 

Therefore  logarithmic  interval  between  them  is— 
•17609  —  -17560  =  00049. 

60.  Criticise  the  following  statements  taken  from  Zahm's  "  Sound 
and  Music:"  (a)  Since  Mersenne's  time,  as  is  apparent,  the  rise  in 
pitch  has  been  very  great  indeed  (p.  77).  {b)  Music  written  by  Mozart, 
Handel,  Beethoven,  and  Haydn  must  be  sung  more  than  a  semitone 
higher  than  it  was  intended  to  be  sung  (p.  78).  (c)  Orchestras  and 
military  bands  are,  in  the  main,  responsible  for  this  undue  elevation  of 

pitch  (p.  78).     (London,  1901.) 
An$. — Mersenne  (about  1650).  His  spinet  was  tuned  to  A  =  402  9. 

Handel  (1685-1759).  Mozart  (1756-1791).  Haydn  (1732-1809).  Beet- 

hoven (1770-1827).  Handel's  fork,  A  =  422*5.  Stein's  fork,  A  =  421. 
Stein  made  pianos  for  Mozart  and  Beethoven.  In  1810,  Paris  opera, 
A  =  427.  In  1820,  London  Philharmonic,  A  =  433.  In  1830,  Paris 

opera,  A  =  434  to  440.  At  present  day,  A  r=  455  to  457.  See  Ellis' 
-"History  of  Musical  Pitch  in  Europe."    Hence  (a)  is  abundantly 
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justified.     Also  (4)  music  written  by  the  composers  mentioned  is  at  the 
present  day  sung  quite  half  a  tone  sharper  than  they  intended,  for 

  is  greater  than  — .     (e)  Is  also  doubtless  true.    Orchestras  and 422  15 

military  bands  have  continually  raised  the  pitch  in  their  efforts  after 
supposed  brilliancy. 

61.  How  has  the  velocity  of  sound  in  air  been  exactly  determined? 
How  is  it  affected  by  temperature  ?    (UniYersity  of  London,  1902  ) 

Ans. — Two  stations,  A  and  JB,  are  chosen,  a  measured  distance 
(several  miles)  apart.  A  canon  is  fired  at  A,  and  time  between  fiash 
and  report  noted  at  B.  As  soon  as  possible  after  this  a  canon  is  fired 
at  £,  and  time  between  flash  and  report  noted  at  A.  The  average  of 
these  two  times  is  taken.  This  eliminates  any  error  due  to  the  wind. 
There  will  still  remain  a  slight  error  due  to  the  unequal  times  of 
perception  for  sight  and  hearing.  This  can  be  got  rid  of  by  dispensing 
with  the  observer  and  substituting  an  electric  current  to  fire  the 
cannon,  say  at  A,  and  at  the  same  time  mark  the  moment  of  its 
occurrence  on  a  revolving  cylinder  at  B.  The  moment  of  the  arrival  of 
the  sound  wave  at  B  can  be  recorded  on  same  cylinder  by  causing  an 
accoustical  pendulum,  set  in  motion  by  this  sound  wave,  to  make  or 
break  contact.  Knowing  the  rate  of  revolution  of  cylinder,  the  time 
is  thus  accurately  ascertained.  One  difficulty  still  remains,  viz.,  the 
ascertaining  the  average  temperature  of  the  air  through  which  the 
sound  wave  has  travelled. 

62.  A  band  is  playing  at  the  head  of  a  procession  540  ft.  long,  and 
the  mea  step  128  paces  a  minute,  exactly  in  time  with  the  music  as 
they  hear  it.  Those  at  rear  are  exactly  in  step  with  those  in  front. 
What  is  the  velocity  of  sound  ?    (London,  1902.) 

An8. — As  the  men  in  rear  are  in  step  with  those  in  front,  and  as  from 
front  to  rear  is  540  ft.,  it  is  evident  that  the  sound  travels  that  distance 

iu  exactly  same  time  as  the  men  take  to  march  one  step,  that  is  the 
fiound  travels — 

540  ft.  in  -—  minute,  or  540  ft.  in  —  :=  —  seconds. 128  128        32 
540  X  32 

or  —   ft.  in  one  second,  or  1152  ft.  per  second. 15 

63.  Show  how  the  pitch  of  a  note  heard  from  a  source  of  given 
frequency  is  affected  by  the  motion  of  the  source  to  or  from  the  hearer. 
A  policeman  who  believed  that  a  steam  car  had  passed  him  at  least  at 
20  miles  an  hour,  stated  in  cross  examination  that  the  note  of  the  bell 
certainly  did  not  change  more  than  half  a  semitone  as  the  car  passed. 
If  he  was  right  in  this,  how  many  miles  an  hour  might  the  car  have 
been  going?    (London,  1902.) 
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An»,—Yox  first  part,  see  Miscellaneous  Questions,  No.  14,  p.  305. 
For  second  part,  note  of  bell  was  not  sharpened  more  than  a  quarter  of 
a  semitone  by  the  advance  of  car,  nor  flattened  more  than  the  same 
amount  by  its  retreat.  Now  vibration  ratio  of  a  quarter  of  a  semitone 

is— 
V^    =    -01016. 

lo 

Let  n  be  vibration  number  of  bell,  and  take  1120  as  velocity  of  sound. 
1120  ,       ,, 

Then   =  wave  length. 
n 

The  policeman  therefore  had  perceived  at  most  «  +  «  X  '01016  waves 
per  second,  and  the  n  X    01016  waves  were  due  to  the  motion  of  the 
car.     Therefore  the  velocity  of  the  car  very  nearly  equalled — 

1120  n   X  -0106^,        ,   ,,  „^„„    ,  ,    .   ft.  per  second  =  11  3792,  sav  12  ft.  per  second., n  1 

.       12  X  3600     „  ,  ^^      „ 
t.e,.   miles  per  hour  =i  8i  miles  per  hour. 

'        5280  ^  *  ^ 
64.  When  a  very  gentle  wind  is  blowing,  sound  is  clearly  heard  a 

long  way  to  leeward,  but  only  a  short  distance  to  windward.  Why  is 
this  ?  Why  also  can  a  speaker  standing  on  the  ground  be  heard  only  a 
short  distance  in  the  open  air  on  a  hot  still  day,  while  the  distance  is 
much  increased  if  he  mounts  a  pedestal  ?     (London,  1902  ) 

^M«.— The  velocity  of  the  wind  is  less  at  the  earth's  surface  than  it  is 
above,  because  of  the  friction  of  the  current  of  air  against  the  ground. 
Consequently,  the  sound  waves,  which  are  travelling  in  the  same 
direction  as  the  wind,  near  the  ground  lag  behind  those  above.  Now 
imagine  a  huge  sheet  of  paper  carried  forward  by  the  wind  in  such  a 

way  that  it  is  vertical,  and  its  surface  at  right  angles  to  the  wind's 
direction.  If  this  is  retarded  below,  what  happens?  It  ceases  to  be 
vertical,  the  top  inclining  forward,  and  the  direction  of  motion  of  the 
sheet  of  paper  is  now  not  onwards  in  a  horizontal  direction,  but 
towards  the  ground.  Precisely  the  same  thing  happens  to  the  sound 
wave ;  its  direction  is  towards  the  ground.  When  the  sound  wave  is 

proceeding  against  the  wind  it  is  evident  that  precisely  the  opposite 
occurs,  the  wind  delays  the  sound  wave  above  more  than  it  does  below, 
and  the  waves  are  therefore  tilted  upwards,  and  are  soon  lost  altogether 
as  far  as  listeners  on  the  ground  are  concerned.  On  a  hot,  still  day  the 
air  near  the  ground,  heated  by  the  hot  earth,  is  at  a  higher  temperature 
than  the  air  above.  Sound  travels  faster  in  hot  air  than  in  cool, 
therefore  on  such  a  day  it  will  travel  faster  near  the  ground  than  at  a 
distance  above.  Now  this  is  precisely  the  same  condition  as  in  the  first 
part  of  this  question  when  the  sound  waves  are  travelling  against  the 
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wind.  Consequently  the  result  is  the  same,  the  sound  waves  are  tilted 
upwards  and  are  lost  to  listeners  at  a  distance.  If  the  speaker  mount 

a  pedestal,  the  sound-waves  are  emitted  in  the  cooler  air  above,  and 
will  proceed  in  a  horizontal  direction,  if  emitted  horizontally,  or 
unaltered  while  in  air  at  same  temperature,  that  is  at  same  level  and 
spreading  out  into  the  warmer  layers  below,  will  be  thus  heard  at  a 
much  greater  distance. 

65.  How  is  the  velocity  of  sound  in  air  affected  by  temperature  ? 
(London,  1902  ) 

Ans.—lt  V\  and  V^  are  velocities  of  sound  at  temperatures  f,  and  U^ 

r,     _  /273_+  ̂  

y     273  +   t^ 
then  -' 

If  L  =  0,  To  =  1090:  therefore r.    _        /273  + 

1090        ̂ /  273" 
or  r  =:  1 090      /   1  -|-  _L,  which  formula  gives   the   velocity  of 

v/  273 
sound  Fi  in  air  at  any  temperature  t{ . 

66.  What  are  combination  tones  ?  How  have  they  been  shown  to 
exist  outside  the  ear?    (London,  1902.) 

Ans. — For  first  part,  see  p.  135.  Second  part,  it  has  been  shown  that 
their  intensity  can  be  increased  by  the  use  of  appropriate  resonators, 
and  this  can  only  be  the  case  if  they  have  an  objective  existence. 

67.  If  a  certain  tone  is  produced  by  260  vibrations,  by  how  many 
vibrations  are  produced  the  tones  a  perfect  fifth  lower,  and  a  major 
second,  a  minor  third,  and  a  major  sixth  higher?  (University  of 
Edinburgh,  1907.) 

Ana.— 1131-,  292^.  312,  433^. 
68.  What  change  would  require  to  be  made  in  (a)  the  length 

{b)  the  tension  of  a  string  in  order  to  raise  its  pitch  by  a  major  third? 
(Royal  University  of  Ireland,  1906.) 

Ans. — (a)  It  must  be  shortened  to  four  fifths  of  its  present  length. 
{b)  It  must  be  increased  to  ̂ ±  of  its  present  tension. 
69.  Explain  the  duU  and  insipid  character  of  the  top  notes  of  a 

pianoforte,  compared  to  the  bottom  notes  of  that  instrument.  (Univer- 
sity of  London,  1906.) 

Ans. — While  the  lower  notes  are  extremely  rich  in  overtones,  the 
highest  notes  are  nearly  or  quite  simple  tones. 

70.  The  note  sounded  by  the  horn  of  a  motor  seems  to  fall  a  whole 
tone  in  pitch  as  it  passes  a  stationary  observer.  Show  that  it  must  be 
travelling  about  45  miles  an  hour.     (University  of  Cambridge,  1904.) 

Y 
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Ans. — Let  v,  be  velocity  of  motor  in  ft.  per  second. 
V,  the  velocity  of  sound, 

and  n,  the  vibration  number  of  horn. 

Then  length  of  sound  wave  as  motor  approaches  observer  is 
V  —  V 

and  after  it  has  passed, 
n 

V  +  V 
n 

Therefore        V  +  v        V  —  v 

thus  V  + 

V 

and  V     —        p^ 
Take  V  =  1120 

then      V     =       11^    ft.  per  
sec. 17 

1120         60        60  1 

thus        V    =     -—    X  -r    X  T  X       ..on         ̂ ^^^^  P^^  hour. 17  1  1  52oU 

=  45  nearly. 

71.  The  lower  tone  of  a  just  scale  of  one  octave  has  a  frequency  96. 
Find  the  frequencies  of  the  other  seven  notes.  Find  also  exactly  what 
alterations  will  be  needed  for  a  modulation  into  the  dominant.  (Camb. 
1904.) 

Ans  —96  (106f ),  108,  120,  128,  144,  160,  180,  192. 
128  must  be  replaced  by  135 

and         162  will  be  required. 

72.  A  C  fork  is  struck  a  considerable  blow.  Explain  (1)  why  the 
note  C  should  sound  at  first  too  flat,  (2)  why  the  octave  c  should  be 

audible,  (3)  why  the  note  a^  (or  thereabout)  should  be  audible  also. 
(Camb.,  1904.) 

An8. — In  such  a  case,  the  vibrations  of  the  fork  no  longer  follow  the 
pendulum  law.  Hence  (1)  at  first  the  vibrations  are  somewhat  slower, 
(2)  the  octave  is  audible,  being  formed  in  an  analogous  way  to 
combination  tones.  It  is  as  if  the  fundamental  formed  summation 

tones  with  itself  :  hence  sometimes  not  only  the  octave  but  the  Octave 
Fifth,  Double  Octave,  &c,  can  be  heard.  (3)  This  is  the  first  Overtone, 
(see  p.  123.) 

73.  Why  is  it  advantageous  to  have  an  orchestra  or  choir  compactly 
arranged  in  as  small  a  space  as  possible  ?  (University  of  Cambridge, 
1905.) 
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ulns. — So  that  all  the  simultaneous  sounds  from  the  orchestra  or  choir 
may  strike  the  tympana  of  the  hearer  at  the  same  instant. 

74.  What  are  the  chief  combination  tones  that  can  be  heard 

accompanying  the  notes  C,  E,  c,  when  sounded  together.  (Cambridge, 
1905.) 

Ans. —  Difference  tone  due  to  C  and  E  : —  C^ 
Do.  „  „  E  and  c  :—  G, 

75.  Explain  how  a  sound  can  be  heard  at  a  much  greater  distance 
through  a  speaking  tube  than  in  the  open,  and  why  a  sound  can  be 
heard  at  a  much  greater  distance  in  a  wind  if  the  wind  blows  from  the 
source  of  sound  to  the  observer,  tlan  if  the  wind  is  blowing  in  the 
opposite  direction.     (Cambridge,  1905.) 

Ans. —  For  first  part  see  p.  55 
For  latter  part  see  p.  320 

76.  Describe  the  phenomenon  of  reflection  of  sound.  How  can  this 
phenomenon  be  shown  in  a  room  with  the  aid  of  a  sensitive  flame? 
Cambridge,  1905.) 

Ans. —  For  first  part  see  pp.  54  and  55 
C 

For  latter  part : —  Arrange  two  tubes,  say  4  inches  in  diameter,  and  a 
few  feet  long,  as  in  diagram.  Let  source  of  sound,  say  a  watch,  be 
placed -at  A,  and  the  sensitive  flame  at  B.  Adjust  the  sensitiveness  of 
the  flame,  till  it  just  does  not  respond  to  the  tick  of  the  watch.  If 
necessary  have  a  screen  between  A  and  B.  Now  place  a  reflector 
C,  a  book  will  do,  so  that  the  angle  of  incidence  is  equal  to  the  angle  of 
reflection  and  the  flame  will  at  once  respond. 

77.  A  major  sixth  is  played  by  an  open  and  a  stopped  organ  pipe. 
What  difference  in  the  effect  will  there  bo  in  the  two  cases  when  (1)  the 

■open  pipe  plays  the  lower  note  and  (2)  the  stopped  pipe  plays  the  lower 
note?    (University  of  Cambridge,  1906. j 
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Ans. — 
PI        n 

/ 
■^1 

d,  d, 
As  seen  above,  in  (1)  there  is  no  element  of  roughness  whatever,  but  in 
(2)  there  is  the  beating  of  jBrst  overtones  at  the  interval  of  a  tone. 

78.  A  violoncello  solo  is  reproduced  on  a  phonograph,  but  the 
phonograph  is  run  twice  as  fast  as  when  the  record  was  taken.  Would 
the  solo  sound  in  tune  ?  If  so,  would  it  be  possible  to  distinguish  the 
reproduction  from  the  reproduction  of  the  same  solo  played  by  a  violin  ? 
(Camb.,  1906.) 

Am. — The  solo  would  sound  in  tune.  It  would  be  easy  to  distinguish 
the  reproductions,  because  although  the  pitch  might  be  the  same,  the 

quality  of  the  tones  of  the  'cello  differs  from  that  of  the  violin. 
79.  A  train  is  approaching  a  hill  from  which  a  well  defined  echo  can 

be  heard.  The  engine  driver  sounds  his  whistle  ;  what  will  bo  the 
character  of  the  echo  heard  by  (1)  the  engine  driver,  (2)  an  observer 
who  is  stationary?     (Camb.,  190(),) 

Ana. — (1)  To  the  engine  driver  the  echo  will  appear  sharper  than  the 

whistle,  owing  to  Doppler's  Law  (see  p.  305,  No.  14)  and  thus  beats  will 
be  beard.  (2)  If  the  observer  is  between  the  engine  and  the  hill,  there 
will  be  no  difference  between  the  pitch  of  the  whistle  and  the  echo ; 
but  after  the  engine  has  passed  him,  the  pitch  of  the  whistle  will 
apparently  flatten  (see  p.  305,  No.  14)  and  thus  beats  will  be  heard 
between  this  and  the  echo. 

80.  A  horn  sounds  a  note  whose  frequency  is  250.  What  will  be 
the  effect,  if  any,  on  the  pitch  of  the  note  heard  by  an  observer  of  (1) 
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the  observer  approaching  the  sound  rapidly,  (2)  the  horn  approaching 
the  observer  rapidly,  (3)  a  strong  wind  blowing  from  the  horn  to 
the  observer?     (University  of  Cainb.,  1907) 

Jns, — (1)  The  pitch  is  raised  above  250  (see  p.  305,  No.  14) 
(2)  The  pitch  is  raised  above  250  and  a  trifle  more  than  in case  (1) 

{'•i)  No  change  of  pitch. 
81.  Two  strings  are  tuned  approximately  a  fourth  apart.  Their 

frequencies  are  300  and  402*5.  If  the  first  six  harmonics  are  present, 
what  will  be  the  character  of  the  beats  that  can  be  heard  ?  (Camb  ,  1907.) 

Ans. — The  frequencies  of  the  first  six  harmonics  are 
600,        900,        1200,        1500,       1800,        2100,        and 

805,      1207-6,      1610,       2012  5,       2415,        2817  5, 
of  these  only  1207*5  and  1200  are  within  beating  distance,  and  these 
will  produce  7*5  beats  per  sec. 

82.  A  tuning  fork  when  held  above  a  column  of  air  13  inches  long 
and  closed  at  one  end  causes  it  to  resound.     Find  the  frequency  of  the 
tuning  fork    (velocity  of  sound  =:  1100).     (Victoria  University,  1907. 

Ans.—    1100  X  12 ________  _  254  nearly. 

83.  If  the  vibration  number  of  g  is  192,  what  are  the  vibration 

numbers  of  c,  e',  d'  and  f'#?     University  of  Edinburgh,  1909. 192  2 
Ans.~c    =          X     r    =     128 1  o 

128  2  5 
e'    .=    --     X     -     X     -    =    320 114 

192  3 
d'    =   X     -    =    288 1  2 

288  5 

f'if    =    --     X     7    =    360 1  4 

84.  If  the  vibration  number  of  a'  is  440  what  are  the  vibration 
numbers  of  d',  f'#,  c"#  and  e"?    University  of  Edinburgh,  1910. 

440  6  1  9 
Ans.—  d'    =    --     X     -      X     -     X     -    =    297 1  o  2  8 

297  5 

l'«    =    --     X     7    =    371i 1  4 

^  c"#   =    37H     X     -    =    556J 

440  3 
e"     =    -    X    -    =    660 
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85.  IJovv  is  the  apparent  pitch  of  a  sound  affected  by  motion  of  (1) 
tlie  source  of  sound,  (2)  the  observe  r  ? 

Two  horns  on  a  moving  motor  car  sound  to  the  driver  a  perfect  fifth. 
Will  a  stationary  observer  hear  the  same  or  a  different  interval  ?  lifus. 
I5ac.  Cambridge,  1903. 

Arifi. — (1)  For  first  part  of  question  see  pajye  305,  No.  14. 
(2)  Let  V,  be  velocity  of  sound, 

and  u,  be  vibration  number  of  one  horn  when  at  rest, 
V 

then  —  is  the  wave  length  at  rest, n 
V  1 

i.e.,  -  is  distance  the  sound  travels  in  -thof  a  second, n  n 

Now  let  a  be  velocity  of  motor  car, 
a  1 

then  -  is  distance  motor  car  travels  in  -thof  a  second, 
n  n 

V       a        1 
Thus  in  this  case  the  sound  travels   in  —  th  of  a  Fecond, n       n        n 

A'— a 

when  motor  is  travelling  with  velocity  a,  that  is   is   the    wave n 

length  as  regards  an  obsever  in  advance  of  the  car. 

And  to  such  an  observer  V  -f-  — —  =  n  (   )  is  the  vibration 
n  \V— a/  number. 

Similarly  to  an  observer  behind  the  car  the  vibration  number  would  be 

Let  300  and  200  be  the  vibration  numbers  as  heard  by  driver,  who  is  at 
rest  relatively  to  the  horn.  Then  when  motor  is  moving  with  velocity 
a,  the  vibrati  ;n  numbers,  as  regards  a  stationary  observer  will  be  as 

300  (   )  to  200  ( — —  I  that  is  300  to  200 
VV  +  a/  \V     a/ 

so  the  observer  hears  the  same  interval,  thougli  the  notes  themselves 
are  sharpened  or  flattened. 

86.  Two  steel  wires  of  lengths  8  and  12  inches,  are  found  to  give  the 
same  notes  when  stretched  by  weights  of  40  and  30  Iba.  respectively. 
Compare  their  thicknesses.     Mus.Bac,  Cambridge,  1909. 

An%. — Let  vibration  number  of  note  be  n. 

Then  if  lengths  were  increased  to  24  inches,  other  things  remaining 
the  same,  the  vibration  numbers  would  be  as 

n        n 
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Now  if  stretching  weights  were  increased  to  120,  the  vibration  numbers 
would  be  as 

n  /  n  /  n 

-     X     v/3     :     -     X     ̂ 4    or    ̂ ^  :     u 
That  is,  if  the  two  strings  were  similar  in  every  respect  except  thickness, 

their  vibration  numbers  would  be  as  1     :     v^  3 
Therefore  their  thicknesses  are  as  \/  3    :     1 

87.  How  would  you  ascertain  the  vibration  number  of  any  extremely 
high  sound,  one  near  the  highest  limit  of  ordinary  perception  ?  Please 
suggest  some  device  (as  simple  as  possible)  by  which  to  produce  these 

high  tones.     What  ore  * '  bird  calls  ?  " 

Ans.  The  best  way  of  producing  extremely  high  notes  is  by  means 

of  the  "bird  call."  In  this  instrument,  a  stream  of  air  issuing  from 
a  circular  hole  in  a  tin  plate  impiuges  centrically  upon  a  similar  hole 

in  a  parallel  plate  held  at  a  little  distance.  To  make  a  "bird  call," 
cut  out  from  thin  sheet  metal  (ordinary  tin  plate  will  do)  a  disc  about 
the  size  of  a  shilling  or  less.  Drill  a  bole  at  the  centre  of  small 
diameter,  say  1  millimetre,  and  solder  a  short  supply  tube  to  the  disc, 
so  that  air  blown  through  the  supply  tube  will  pass  through  the  hole. 
Now  cut  out  another  plate  of  the  shape  of  an  equilateral  triangle,  just 
large  enough  to  lie  on  the  circular  disc,  or  a  trifle  larger.  Drill  a  hole 
in  the  centre  of  this  triangle  similar  to  the  hole  in  the  disc.  Turn 
down  the  corners  of  the  triangle  at  right  angles  and  solder  them  to 
the  disc  in  such  a  manner  as  to  get  the  two  holes  exactly  opposite 
and  the  distance  between  the  plates  small,  say  2  or  3  millimetres. 

To  use  "bird  calls,"  simply  blow  down  the  supply  pipe.  The 
pitch  is  almost  independent  of  the  size  and  shape  of  the  plates.  It 
varies  directly  as  the  velocity  of  the  jet  and  inversely  as  the  distance 
between  the  plates,  that  is  to  say,  as  long  as  we  keep  to  the  same 
instrument,  we  raise  the  pitch  by  blowing  harder  down  the  supply 
pipe,  and  vice  versa — but  with  different  instruments  the  nearer  the 
plates  are,  the  higher  the  pitch  of  the  note  produced.  For  calls  of 
medium  pitch,  the  plates  may  be  of  tin  plate  as  mentioned  above, 
but  for  calls  of  very  high  pitch,  thin  brass  or  sheet  silver  is  more 
suitable.  In  that  case  the  hole  may  be  as  small  as  \  millimetre  in 
diameter  and  the  distance  between  them  as  little  as  1  millimetre.  In 

any  case  the  edg<  s  of  the  holes  should  be  sharp  and  clean. 

By  means  of  these  "bird  calls,"  tones  of  higher  and  higher  pitch 
may  be  obtained,  until  they  exceed  the  limits  of  audition.  It  is  quite 
impossible  to  ascertain  the  pitch  of  such  hiph  tones  as  are  referred 
to  in  this  question  by  any  audible  method.  The  only  way  with  such 
ex  eedingly  high  tones  and  also  with  the  still  higher  tones  which  are 
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beyond  the  auditory  limits  is  to  actually  measure  the  wave  length 
and  from  this  to  deduce  the  vibration  number.  This  is  effected  with 

the  aid  of  the  high  pressure  sensitive  flame.  The  "  bird  call"  blown 
at  a  constant  pressure  by  means  of  an  acoustical  bellows  is  placed 
two  or  three  feet  from  a  plane  reflecting  surface.  The  direct  and 
reflected  waves  will  interfere  so  as  to  produce  stationary  waves  with 
stationary  nodes  and  ventral  segments.  The  sensitive  flame,  carefully 
adjusted  to  the  point  of  flaring,  is  then  moved  backwards  or  forwards 
between  the  call  and  the  reflecting  surface,  tiil  a  point  is  reached  where 
it  is  least  affected.  This  point  is  the  middle  of  a  ventral  segment. 
It  is  then  moved  cautiously  till  a  successive  point  of  least  movement 
is  reached.  This  is  the  middle  of  the  succeeding  ventral  segment. 
Twice  the  distance  between  these  two  points  is  the  wave  length. 
This  divided  into  the  velocity  of  sound  at  the  temperature  of  the  room 

gives  the  vibration  number. 
Wave  lengths  as  small  as  1  centimetre,  or  with  great  care,  even 

•6  centimetre  may  be  obtahied,  the  latter  corresponding  to  upwards 
of  50,000  vibrations  per  second.  Of  course  such  tones  are  absolutely 
inaudible.  In  practice  it  is  found  more  convenient  and  more  accurate 
to  move  the  reflecting  surface  and  keep  the  flame  stationary. 
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well -arranged  form. 

HOW  TO  READ  MUSIC.  By  John  Curwen.  Twenty-four  chapters, 
pp.  128.  Thirty-third  thousand.  Price,  cloth,  Is.  6d. ;  paper.  Is. ; 
postage  1^.  Teaches  sight-singing  by  the  Tonic  Sol-fa  system,  then 
applies  the  knowledge  gained  to  the  staff  notation,  and  teaches  that 
thoroughly. 

HOW  TO  TEACH  THE  STAFF  NOTATION  to  Tonic  Sol-fa  Pupils. 
By  Edward  Mason,  Mus.B.  Price,  paper  boards,  28. :  postage  2d.  The 
method  of  teaching  fully  detailed  in  lessons.  In  each  lesson,  the  subject 
matter  and  method  or  illustration  are  given  in  parallel  columns,  ending 
with  blackboard  scheme.  Practical  exercises,  164  in  number,  save  the 

teacher's  time  in  preparation. 
MUSICAL  SELF-INSTRUCTOR.  By  J.  Snbddon,  Mus.B.  Price  28.  6d.; 

postage  2d.  Both  notations.  Self-help  in  musical  elements  and  vocal 
practice. 

SCHOOL  MUSIC  TEACHER,  THE.  By  J.  Evans  and  W.  G.McNauoht. 
Tenth  edition,  revised  and  enlarged.  Price  2s.  6d. ;  postage  3d.  A 
guide  to  teaching  singing  in  schools  and  a  text-book  for  the  School 
Teacher's  Music  Certificate  of  the  Tonic  Sol-fa  College,  introducing  also the  staff  notation. 

SINQINQ  IN  ELEMENTARY  SCHOOLS.  By  A.  Watxins.  Cloth,  Is.; 
postage  Id.  A  Course  of  Lectures  delivered  to  the  teachers  under  the 
Leicester  School  Board. 

SPECIMEN  LESSONS  ON  THE  TONIC  SOL-FA  METHOD.  Edited 
by  John  S.  Curwbn.  New  and  enlarged  edition.  Cloth  limp,  Is.  6d. ; 
postage  Id.  Contains  specimen  first  lessons  on  Time,  Tune,  Transition, 
Staff  Notation,  Harmony,  by  J.  Proudman,  W.  G.  McNaught,  L.  0. 
Venables,  S.  Hardcastle,  the  Editor,  and  Geo.  Oakey,  Mus.B. 

STANDARD  COURSE,  THE.  Price  3s.  6d.  ;  postage  3d.  Lessons  and 
Exercises  on  the  Tonic  Sol-fa  Method  of  Teaching  Music.  E<»writt«n, 
1901.  Includes  also  fetaff  Notation,  Musical  Form,  Expression,  Voice- 
traininf?,  Pronujiciation,  Qjarmony,  kc. 

TRAININQ  COLLEGE  MUSIC  COURSE.  By  E.  Mills,  Mus.B. 
Sixth  edition.  Price  38. ;  postage  2\di.  Staff  Notation  Course,  Vocal 
and  Theoretical,  on  the  Movable  JDo  system,  arranged  so  as  to  prepare 
directly  for  the  Christmas  Examination,  the  Second  Year  Examination  by 
H.M.  Inspector,  Pupil- teacher  and  Scholarship  Papers,  and  music  is 
schools  under  the  Code. 

TEACHER'S  MANUAL,  THE.  By  John  Curwbn.  Sixth  edition.  1 
manual  of  the  art  of  teaching  in  general,  and  especially  as  applied  tr 
music.     Price  Am,  ;  postage  4d. 

London:  J.  CUE  WEN  k  SONS  Ltd.,  S4  Bbrnrrs  Strrbt.  W. 



THEORY  and  HARMONY  BOOKS 

A  B  C  OF  MUSICAL  THEORY.  By  Ralph  Dunstan,  Mus.D.  Price, 
cloth,  2s.  ;  postage  2d.  Numerous  original  and  selected  questions  and 
exercises.     Prepares  for  any  of  the  usual  examinations. 

CANDIDATE  IN  MUSIC,  THE.  By  H.  Fisher,  Mus.D.  Book  I. 
Elements.  Price,  in  paper,  is.  6d.  ;  in  cloth,  2s.  ;  postage  i4d. 
A  text-book  of  Musical  Elements  for  Students  preparing  for  the 
public  examinations,  with  a  chapter  on  examinations,  etc.  Book  II, 
Harmony.     Price,  in  paper,  2s.  ;    in  cloth,  2s.  6d.  ;    postage  2M. 

COMPENDIUM  OF  HARMONY.  By  Geo.  Oakey,  Mus.B.  Price  2s.  ; 
postage  2d.  Comprises  the  subject  matter  of  the  first  half  of  the 
author's  "  Text-book  of  Harmony,"  the  examples  in  Sol-fa  only, with  a  new  set  of  exercises. 

FIGURED   BASS.     By   Geo.   Oakey,   Mus.B.     Price,   limp  cloth,    is.  ; 
postage  id.    Explains  figured  bass  in  modern  harmonies  and  epitomises 
harmony. 

FIRST  STEPS  IN  HARMONY  and  the  Harmonising  of  Melodies.  By  Ralph 
Dunstan,  Mus.D.  Price  2s.  cloth  ;  postage  2d.  A  concise  manual 
for  beginners  ;    Staff  notation.     Includes  250  progressive  exercises. 

MANUAL  OF  MUSIC,  A.  By  Ralph  Dunstan,  Mus.D.  Price  2s.  6d.  ; 
postage  3d.  Covers  the  whole  practical  course  of  music  both  for  Pupil 
Teachers  and  Students  in  Training  Colleges.  Both  notations. 
Appendix  of  latest  examination  papers. 

MUSICAL  THEORY.  By  John  Curwen.  Price  3s.  6d.  ;  postage  4d. 
Or  in  parts— I,  4d.  ;  II,  4d-  ;  HI.  is.  4d.  ;  IV,  4d.  ;  V,  is.  The 
main  divisions  of  the  work  are  five — the  Common  Scale  and  Time — 
the  Minor  Mode  and  Transition — Musical  Form — Expression — 
Harmony.     All  examples  in  both  notations. 

NEW  GRADED  HARMONY  EXERCISES.  By  Geo.  Oakey,  Mus.Bac. 
A  complete  course  of  exercises  in  both  notations,  without  instruction. 
Price  2s.,  cloth  ;   postage  i-^d. 

TEST  EXAMINATION  PAPERS  IN  THE  ELEMENTS  OF  MUSIC.  By 
Henry  Fisher,  Mus.Doc.  Three  Series.  Price  6d.  each  Series  ; 

postage  id.  These  are  quarto  musical  copy-books  in  paper  covers, 
with  questions  set  out  in  large  type,  and  blank  staves  or  lines  for 
written  answers. 

TEXT-BOOK  OF  COUNTERPOINT.  By  Geo.  Oakey,  Mus.B.  Price  2s., 
cloth  ;  postage  i^d.  Both  notations.  Subjects  for  exercises  given 
at  the  end.     Greatly  enlarged  and  re-written. 

TEXT-BOOK  OF  HARMONY.  By  Geo.  Oakey,  Mus.B.  Price  3s.  ; 
postage  2^d.  Seventeen  chapters,  with  about  150  graded  exercises 
at  end.     All  examples  in  both  notations.     Key  to  the  Exercises,  2s. 

TEXT-BOOK  OF  MUSICAL  ELEMENTS.  By  Geo.  Oakey,  Mus.B.  In 
paper,  is.  ;  cloth,  is.  6d.  ;  postage  i^d.  All  the  usual  topics  arranged 
on  a  new  plan  ;  with  elements  of  harmony.  An  appendix  of  questions 
and  exercises. 

London  :   J.  CURWEN  &  SONS  Ltd.,  24  Berners  Street.  W. 



History,  Biography,  Church  Music,  &c. 

HANDBOOK  OF  ACOUSTICS.  By  T.  F.  Harris,  B.Sc.  F.C.S.  Price 
3s.  6d.  ;  postage  3d.  A  handbook  for  musical  students.  Contains 
18  chapters  profusely  illustrated  ;  with  numerous  questions  and  an 
Appendix  of  Examination  Papers. 

HISTORY  OF  ENGLISH  MUSIC.  By  Henry  Davey.  A  monumental 
work  tracing  the  history  and  proving  the  advanced  position,  past  and 
present,  of  English  music.  Contains  many  new  and  important  facts. 
Price  6s.  ;   postage  4^d. 

HYMN  LOVER,  THE.  By  Rev.  W.  Garrett  Horder.  Price  5s.  ; 
postage  4d.  Second  and  revised  edition.  An  account  of  the  rise  and 
progress  of  Hymnody. 

MEMORIALS  OF  JOHN  CURWEN.  By  his  Son,  J.  Spencer  Curvven. 
Price  2s.  ;   postage  3d. 

MUSICAL  HAUNTS  IN  LONDON.  By  F.  G.  Edwards.  Chapters  on 
Handel,  Haydn,  Mendelssohn,  Weber,  and  many  other  musicians,  with 
stories  and  pictures  of  their  residences  in  London.    Price  is.  ;  post.  2d. 

MUSICIANS  OF  ALL  TIMES.  Compiled  by  David  Baptie.  Second  and 
cheaper  edition,  is.  6d.  ;  postage  2d.  Concise  biography  of  composers, 
teachers,  artists,  and  all  other  musical  workers,  containing  5,000  names. 

STUDENT'S  MUSICAL  HISTORY.  By  H.  Davey.  Price  is.  ;  postage 
i^d.  ;  cloth,  is.  6d.  ;  postage  2|^d.  The  cheapest  historical  handbook  ; 
comprehensive,  concise,  brought  up  to  date. 

STUDIES  IN  WORSHIP  MUSIC.  First  Series.  By  J.  S.  Curwen. 
Price  5s.  ;  postage  4d.  Contains  articles  and  information  on  various 

matters  relative  to  Worship  Music,  arranged  in  three  divisions — His- 
torical, Practical,  Descriptive.     Revised  and  enlarged. 

STUDIES  IN  WORSHIP  MUSIC.  Second  Series.  By  J.  S.  Curwen. 

Price  2s.  6d.  ;  postage  2^d.  Continues  above  work — articles  on  the 
Chapel  Royal,  Westminster  Abbey  Choir,  &c. 

SHORT  DICTIONARY  OF  MUSICAL  TERMS,  A.  By  Arnold  Kennedy. 
M.A.  Price  is.  (postage  id.)  ;  cloth,  is.  6d.  (postage  i^d.).  About 
2,700  terms.  Gives  the  phonetic  pronunciation  of  foreign  words. 
German,  French,  and  Italian  terms  are  included. 

UNITED  PRAISE.  By  F.  G.  Edwards.  Price  3s.  6d.  ;  postage  3d. 

Originally  advertised  as  "  Common  Praise."  A  practical  handbook  of 
Nonconformist  Church  Music. 

LONDON  :    J.  CURWEN  &  SONS  Ltd.,  24  BERNERS  STREET,  W. 
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